12.28124 Surface Area \& Volume of Prisms \& Cylinders


- Polyhedron with 2 parallel and $\equiv$ bases.
- It is named by the shape of its base
- Right - each lateral edge is $\qquad$ to both bases. all faces

CYLINDER

$V=B h$
$I \ldots=h$
$S A=1 A+2 B$
= Base's Perimeter
B = Base's Area
$h=$ prism's height
Surface Area - the total of the areas of

$V-\pi r^{2} h$
LA. - $2 . r /$
$S . A-2 \pi r^{2}, 2 \pi h$
$r=$ radius of the Base

$h=$ prism's height $\quad$| Volume - the number of cubic units in |
| :--- |
| the interior |

Parts of a cylinder:


- A solid with 2 parallel and $\cong$ circular bases.
- Height - perpendicular distance between the bases
- The height is equal to the axis of rotation.
- Oblique - axis is not $\perp$ to both bases.
- Oblique - lateral edge is not $\perp$ to both bases.

1-4: Find the Lateral Area, Surface Area, and Volume of each.
1.


LA: $10(12)=\left(20 m^{2}\right)$

SA: $L A+2 B$
$120+2(6)=132 \mathrm{~m}^{2}$
$\mathrm{v}: \begin{aligned} & B h \\ & \left.6(10)=60 \mathrm{~m}^{3}\right)\end{aligned}$

$\mathrm{sA}: \angle A+2 B$
$460+2(120)=700 \mathrm{in}^{2}$
v: $\begin{aligned} & \text { Ph } \\ & 120(10)=1200 \mathrm{~m}^{3}\end{aligned}$
4.


LA: $2 \pi r h$

$$
2 \pi r h(2)(8.5)\left(106.8 m^{2}\right.
$$

SA: $2 \pi r^{2}+2 \pi r h$ $2 \pi(2)^{2}+2 \pi(2)(0.5)$
$\mathbf{v}=\pi r^{2} h$
$\pi(2)^{2}(8.5)-\left(106.8 \mathrm{~m}^{3}\right.$


