7-2 Inverse Functions and Relations

Name Block Date

RECALL:

Definition of a relation - a set of ordered pairs.

Definition of a function – a relation in which each element of the domain is paired with one and only one element of the range . . . IN OTHER WORDS - a relation in which the x-coordinates are NOT repeated. (Think of the vertical line test.)

INVERSE of

a FUNCTION: is always a relation,

Example: Relation: $\{(3, 8), (4, -2), (5, -3)\}$

Inverse: $\{(8,3), (-2,4), (-3,5)\}$

Two relations are inverse relations if and only if whenever one relation contains the element (a,b), the other relation contains the element (b,a).

may or may not be a function.

Use the vertical line test.

To determine whether the inverse of a function is itself a function: use the HORIZONTAL line test.

*If no horizontal line intersects the graph of a function f more than once, then the *INVERSE* of f is itself a function.

*If f and f^{-1} are inverses, then f(a) = b if and only if $f^{-1}(b) = a$.

To graph the inverse of a function:

Example:

$$f(x) = x^2 + 1$$

Use a table of values.

Then, find the inverse by switching the order of the ordered pairs.

×	У		×	у
-2	5		5	-2
-1	2		2	-agenti-
0				0
1	2	control in an article and an article and an article and article article and article and article and article article and article article and article articl	2	-industrial
2	5		5	2

To find the inverse of a function:

- Change f(x) to y.
- Switch the x's and y's.
- Solve for y.
- Change y to $f^{-1}(x)$. $(..., f^{-1}(x))$ is read "f inverse of x".)

Example: q(x) = 4x + 4

Now graph each set of points to get the graphs of the two equations and graph y = x as a dashed line.

Now graph each function (g(x)) and $g^{-1}(x)$, and y = x (as a dashed line), on the same grid.

Find the inverse of the given function.

1.

	X	1	2		4	ာ	1
	У	-6	-3	0	3	6	
(1 ~	~\ /~	`	Ca . ·	· · ·	7
11	-6,1)	1(-5,	2)(0	3)(3,4	16,5	

2. {(7, 7), (4, 9), (3,-2)}

Inverse Functions: two function, f and g, are inverse functions if and only if both their compositions are the identity function. That is, f(g(x)) = g(f(x)) = x.

3.
$$f(x) = 1 - x$$
, $g(x) = 1 - x$

$$f(g(X)) = 1 - (1-x) = 1 - 1 + x = x$$

 $g(f(X)) = 1 - (1-x) = 1 - 1 + x = x$

Verify that f and g are inverse functions by showing that
$$f(g(x)) = g(f(x)) = x$$
. Thush on $T \mid t_1 \leq t_1 \leq t_2 \leq t_3 \leq t_4 \leq t_4 \leq t_5 \leq t_5 \leq t_4 \leq t_5 \leq t_5$

5.
$$f(g(2)) = 2$$
 $g(f(2)) = 2$

6.
$$f(g(2)) = 2$$
 $g(f(2)) = 2$

Find the equation for the inverse of each function.

8.
$$g(x) = x^{2} - 9$$

 $X = y^{2} - 9$
 $X + 9 = y^{2}$
 $1 + 9 = y^{2}$

9.
$$h(x) = \frac{1}{2}x + 6$$

 $\chi = \pm y + 6$
 $\chi - 6 = \pm y$
 $2\chi - 12 = y$

Graph the function, its inverse, and the line of reflection. State whether the inverse of the function is itself a function.

 $f(x) = x^2 + 1$

12.
$$f(x) = -2|x-1|+3$$

