8-1 Exponential Growth and Decay Applications

Name <u>Master</u>

Date <u>2013-14</u> Block

Take the following steps to solve each word problem.

- 1. Read the problem to determine whether it represents growth, decay, or compound interest.
- 2. Write down the correct formula and reread the problem.
- 3. Substitute the given values into the formula.
- 4. Solve the equation for the variable.
- 5. Write your answer in a complete sentence.

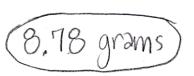
١.	Your grandparents gave you \$2000 the day you were born. Your parents put this gift into a savings account that pays
	4.5% interest compounded quarterly. Today is your 16 th birthday and you go to the bank to withdraw your money to
	purchase your first car. The car you want cost \$5,526. Do you have enough money? If not how much more do you
	need? A all Cart

 $1 = P(1 + \frac{1}{16})^{11} = 4092.38 -4092.38$ $2000(1 + \frac{045}{4})^{(4 \cdot 16)} = 4092.38 -4092.38$

In 1990, the annual out of stat	e tuition at	Florida State	University	was \$2,200.	During the ne	xt 10 years,	tuition
increased by 6.2% each year.	U=al	1+r)n)			~ ×	

a.	Write an exponential growth mod	del for the cost of tuition.	11 = 2,200 (1+.062)	
b.	What is the "growth factor?"	.062	y=2200(1.062)x	

d.	What does x represent?	time (yrs)	What does y represent?	the cost of tuition
		i 1		1 }


e. What is a good window for this function? Make a "sketch" to the right.

	Xmin: -5	Xmax: 30	Xscl:	Ymin	: -10 Ymax:10000	(0,2200)
f	Estimate the y	year when the tu	ition was \$3,5	00	1998 X=8	x=0 at 1990
ø	What was the	e tuition in 2005?	\$5423	63	What was the tuition in 2010?	

h. What will the tuition be the year YOU are ready to enter college?

Current Status	Year you enter College	Tuition
Freshmen	2017 = 21	\$11,163.10
Sophomores	2016 x= 26	\$10,511.39
Juniors	2015 x=21	\$9897.73
Seniors	2014 x=24	\$9319,90

3. Radioactive Decay: Ten grams of Carbon 14 is stored in a container. The amount C (in grams) of Carbon 14 present after t years can be modeled by C = 10(0.99987)^t. How much Carbon 14 is present after 1000 years?

4.	Eril	k bought a new computer for \$3,200. The value of the computer will decrease by about 50% annually.
	a.	Write an exponential decay model for the value of the computer. $U = 3200(15)^{x}$
	b.	What is the "decay factor?" 0.5 The value of the computer will decrease by about 50% annually. $ y = a (1-r)^{\frac{1}{2}} $ $ y = 3200 (15)^{\frac{1}{2}} $ What is the "decay factor?" 0.5
	c.	Using the model, estimate the value of your computer after 2 years. \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	d.	Graph the model using the TI-83 or 84 and the appropriate window. What is the y-intercept? (0, 3200)
	e.	What is a good window for this function? Make a "sketch" to the right.
		Xmin: -5 Xmax: 30 Xscl: Ymin: -5 Ymax: 4660
	f.	When will the computer will be worth \$600? In 2,5 US. When will it be less than \$100? after 5 years.
5.	app	e number of newly reported cases of tuberculosis (in thousands) in the United States from 1991 to 1996 can be proximated by the equation $T = 28.5(0.9567)^t$, where t represents the number of years since 1990.
	a.	What is the initial amount? $28,500$ the decay factor? $.9567$ the annual % decrease? $.0433 = 4.339$ When was the number of newly reported cases approximately 25,000? $x = 3$ 1993 $1-r = .9567$
	b.	When was the number of newly reported cases approximately 25,000? $x=3$ [993] $1-r=.9567$
	c.	Graph the model using the TI-83 or 84 and the appropriate window. What is the y-intercept? $(0,29.5)$
	d.	Graph the model using the TI-83 or 84 and the appropriate window. What is the y-intercept? $\frac{(0,28.5)}{1000}$ In what year were there 16,000 newly reported cases? $\frac{2003}{1000}$
	e.	Estimate the number of newly reported cases in 2005. $14.672 = 14,672$
6.		700 is deposited into an account that pays 4.3% interest compounded monthly, what would the balance in the count be after 7 years? (p. 488, #20)
	59	$\Lambda = P(1+r)nt$

$$A = P(1 + \frac{1}{12})^{nt}$$
 $A = 700(1 + \frac{043}{12})^{(12.7)}$
 4945.34

7. Determine how much is in a retirement account after 20 years if \$5000 was invested at 6.05% interest compounded weekly. (p. 488, #21)

$$A=5000(1+\frac{0605}{52})^{(52\cdot20)}$$
 $(416,755,63)$

8. A college savings account pays 13.2% annual interest compounded semi-annually. What is the balance of an account after 12 years if \$21,000 was initially deposited? (p. 488, #23)

$$A = 21,000(1 + \frac{132}{2})^{(2 \cdot 12)}$$
 $(497,362.61)$