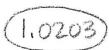

g_g	Applicati	inns af F	Exponential	fight 13	hmic Franc	tiche
UU	1 shhiird r	inibai r	27 MINIMAY	a Poadli		6110119

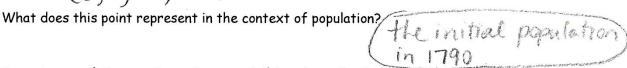
	Mada	5
Name	Master	4
Date		Block

1. Determine the balance of a retirement account after 20 years if \$5,000 was invested at 6.05% interest compounded weekly.)

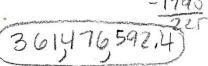
 $A = P(1+\frac{1}{57})^{nt}$ $A = 5000(1+\frac{10005}{57})^{(52.20)} = (16.755,63)$

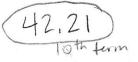

- When Angelina was born, her grandparents deposited \$3000 into a college savings account paying 4% 2. interest compounded continuously.) Angelina never made any deposits or withdrawals from the account.
 - a. What will the balance be after 10 years?

b. If her grandparents want Angelina to have \$10,000 after 18 years, how much would they need to invest? (\$4867,52)


- 3. The first U.S. Census was conducted in 1790. At that time, the population was 3,929,214. Since then, the U.S. population has grown by approximately 2.03% annually.
 - Write a model which represents population growth where y represents population and x represents y=3,929,214(1+.0203) x y=3,929,214(1.0203)x time in years.
 - What is the "growth factor?"

(9,7%, increase from 2000 (ensur)




Graph the model using the calculator. Where is the y-intercept?



Assuming population continues to grow at this rate, estimate the population in 2015.

- A sequence of numbers follows a pattern in which the next number is 115% of the previous number. The first number in the pattern is 12. 12, 13.8, 15.17, 16.250
- Write the function which represents the sequence. $y = 12(1.15)^{\frac{x-1}{2}}$
- What is the value of the tenth number? Round to the nearest hundredth.

1.45	B=2,556 (1tr) 30 (1,744) = (1tr) 30) 50 1,018=1tr
5.)	In 1950, the world population was about 2.556 billion. By 1980, it had increased to about 4.458 billion.
	Write an exponential function to model the world population, y, in billions for 1950 to 1980.
	y=2,556 (1.019)*)
	Suppose the population continued to grow at that rate. Estimate the population in $\frac{2000}{50}$. $y = 2.556 (1.019)^{50} (6.55 billion) - \frac{1900}{50}$
	In 2000, the world population was about 6.08 billion. Compare your estimate to the actual population. was of by 47 billion
	Use the equation you wrote in Part a above to estimate the world population in the year 2020.
	Use the equation you wrote in Part a above to estimate the world population in the year $\frac{200}{70}$ $\frac{1970}{70}$ $\frac{1970}{70}$
	How accurate to you believe this estimate to be? Explain your reasoning.
a	The increase in intensity between each number is 10
(6.)	The Richter scale measures earthquake intensity. The increase in intensity between each number is 10 times. For example, an earthquake with a rating of 7 is 10 times more intense than one measuring 6. The
	magnitude, M, of an earthquake is given by $M = \log x$, where x represents the amplitude of the seismic
	wave causing ground motion. M=109 x amplitude
	(a) How many times as great is the amplitude caused by an earthquake with a Richter scale rating of 8 as
	an aftershock with a Richter scale rating of 5? $10^8 = 10^3$ about $1000 \times as greated as the aftershock.$
	tmp > x=10° X=10°
	b. In 1906, San Francisco was almost completely destroyed by a 7.8 magnitude earthquake. In 1911, an earthquake estimated at magnitude 8.1 occurred along the New Madrid fault in the Mississippi River
	10 8.1 0.3 0 07 x as areat as
	Valley. How many times greater was the New Madrid earthquake than the San Francisco earthquake? 10 8.1 10 7.8 = 10 0.3 = 2 10 7.8 = 10 0.3 = 2 10 7.8 = 10 0.3 = 2 10 2 x as great as the San Francisco earthquake.
7.	The pH of a substance is defined as the concentration of hydrogen ions $[H^{\dagger}]$ in moles. It is given by the
	formula pH = $\log \frac{1}{1}$. Find the amount of hydrogen in a liter of acid rain that has a pH of 4.2.
	PH=109 + 4.2=109 1-109 H
	PH=109 # 4.2=log 1-log H 4.2=log # H=0.0000631 104.2=H (h=0.0000631) mole of hydrogen
8.	For a certain strain of bacteria, the rate of continuous growth, k, is 0.728 when t is measured in days.
	Using the formulas $y = ae^{kt}$, how long will it take 10 bacteria to increase to 675 bacteria?
	Using the formulas $y = ae^{kt}$, how long will it take 10 bacteria to increase to 675 bacteria? $y = ae^{kt}$ $615 = 10e^{0.728t}$ $1 = 2n 61.5 = 65.8 \text{ days}$ $1 = 61.5 = e^{0.728t}$ $1 = 2n 61.5 = 65.8 \text{ days}$
	675=00.721E
	en 61:5 = 0.728 t
	THE WILL