Direct, Inverse, and Joint Variation

DIRECT VARIATION	INVERSE VARIATION	JOINT VARIATION
k is the con :	stant of variation – it is the part that	never changes!
$y = kx, k \neq 0$ $k = \frac{y}{x}$	$y = \frac{k}{x}, k \neq 0 k = xy$	z = kxy, k ≠ 0
"y varies directly with x" as x increases, y increases	" y varies inversely with x" as x increases, y decreases	"z varies jointly with x and y" as x and y increase, z increases as x and y decrease, z decreases
Example: $C = \Pi d (\Pi \text{ is k})$	Example: $t = \frac{D}{r}$ (d is k)	Example: $A = \frac{1}{2}b \cdot h(\frac{1}{2}isk)$

Determining Variation Given an Equation:

Solve the given equation for one of the variables (usually y) and compare it the general forms above.

Examples: a.
$$xy = 10 \rightarrow y = \frac{10}{x} \rightarrow inverse variation$$

b.
$$\frac{y}{3} = x \longrightarrow y = 3x \longrightarrow$$
 direct variation

$$c. x + y = 5 \longrightarrow y = -x + 5$$

c. $x + y = 5 \longrightarrow y = -x + 5 \longrightarrow$ neither (Direct Variation always has a y-int. of o)

Practice: Tell whether x and y show direct or inverse variation. Remember to solve for y first				
	y=9x	2. $y = \frac{1}{2}x$	3. $xy = 0.1$ $y = 0.1$	4. y = x + 5
	Direct	Direct	Inverse	Neither
5. x = 4y	y=4x	6. $x = \frac{5}{y}$ $y = \frac{5}{x}$	$7. x = \frac{y}{3} y = 3x$	8. $\frac{2}{x} = \frac{7}{y}$ $2y = 7x$ $y = \frac{7}{2}x$
	Direct	Inverse	Direct	Direct

Steps to Writing a Variation Equation:

- Write the correct variation formula.
- Substitute the given values into your equation and find k.
- Rewrite the equation with replacing k with the value you found in #2.
- Find the value of the variable by plugging in the new information into your variation equation.

Direct Variation: If y varies directly as x and y = -4 when x = $\frac{1}{3}$, then find y when x = 8.

$$y = kx \longrightarrow -4 = k\left(\frac{1}{3}\right) \longrightarrow k = -12 \longrightarrow y = -12x \longrightarrow y = -12(8) \longrightarrow y = -96$$

Inverse Variation: If y varies inversely as x and y = -2 when x = 5, then find y when x = 2.

$$y = \frac{k}{x} \longrightarrow -2 = \frac{k}{5} \longrightarrow k = -10 \longrightarrow y = \frac{-10}{x} \longrightarrow y = \frac{-10}{2} \longrightarrow y = -5$$

Joint Variation: If z varies jointly as x and y and z = 6 when x = 3 and y = 4, find z when x = 5 and y = 2.

$$z = kxy \longrightarrow 6 = k(3)(4) \longrightarrow 6 = 12k \longrightarrow k = \frac{1}{2} \longrightarrow z = \frac{1}{2}(5)(2) \longrightarrow z = \frac{1}{2}(10) \longrightarrow z = 5$$

Practice Problems

Find the value of k for each scenario. Then write an equation replacing k with the value you found. Finally, find the value of the variable being asked for.

9. If y varies directly as x and y = 8 when x = 2, find y when x = 6.

$$y=4(6) \left(y=24 \right)$$

10. If y varies directly as x and y = -16 when x = 6, find x when y = -4.

$$y = kx - 16 = k(6)$$

 $K = -\frac{16}{6} = -\frac{8}{3}$ $y = -\frac{8}{3}x$ $-4 = -\frac{8}{3}x$

11. If y varies directly as x and y = 132 when x = 11, find y when x = 33.

$$y=kx$$
 $132=k(11)$ $y=12x$ $y=12(33)$ $y=396$ $y=12$

12. If y varies jointly as x and z and y = 24 when x = 2 and z = 1, find y when x = 12 and z = 2.

$$24 = k(2)(1)$$

K=12

13. If y varies jointly as x and z and y = 60 when x = 3 and z = 4, find y when x = 6 and z = 8.

14. If y varies jointly as x and z and y = 12 when x = -2 and z = 3, find y when x = 4 and z = -1.

$$12=k(-2)(3)$$

$$k=-2$$

$$y=kx=12=k(-2)(3)$$
 $\{y=-2x=\}$ $y=-2(4)(-1)$ $\{y=8\}$

15. If y varies inversely as x and y = 16 when x = 4, find y when x = 3.

16. If y varies inversely as x and y = 3 when x = 5, find x when y = 2.5.

K=15

17. If y varies directly as z and inversely as x and y = 10 and z = 5 when x = 12.5, find z when y = 37.5 and x = 2.

$$37.5 = 25 = 25$$

Determining Variation Given a Table of Values:

- Multiply each of the pairs. If the product is the same, then the values show an inverse variation.
- Divide each of the pairs. If the quotient is the same, then the values show a direct variation.
- If neither the product nor quotient is the same, then there is <u>neither</u> direct nor inverse variation.

Example:

Х	у
1.5	20
2.5	12
4	7.5
5	6

When multiplying, the products all equal 30.—

Therefore, the values show an inverse variation

*30 is the constant of variation (k) and the equation is $y = \frac{30}{100}$

Practice: Tell whether x and y show direct variation, inverse variation, or neither. If is direct or inverse, find k and then write the equation of the function.

18.

Х	у
5	15
8	24
1.5	4.5
0.5	1.5
ιΛ	α

19.

10000000000000000000000000000000000000	
х	у
3	5
5	21
4.5	16.25
7	45

20.

a	
Х	у
1	4
2	2
0.5	8
0.25	16

21.

Х	у
3	6
7	10
2.5	5.5
5.7	8.7

How to Solve Word Problems:

- Read the problem and determine what type of variation is represented.
- 2. Write the variation formula and substitute the given values into your equation to find k.
- 3. Do not round k! If it is not a terminating decimal, write it as an improper fraction (premature rounding can completely change the final answer and make it way off!)
- 4. Rewrite the equation replacing k with the value you found in #2.
- 5. Find the value of the variable by plugging in the new information into your variation equation.
- 6. Write your final answer using the correct units.
- 7. If your answer is an amount of money, remember to round to the nearest hundredth.

Example:

The length S that a spring will stretch varies directly with the weight F that is attached to the string. If a spring stretches 20 inches with 25 pounds attached, how far will it stretch with 15 pounds attached?

$$S = kF$$
 \longrightarrow 20 = k(25) \longrightarrow k = $\frac{20}{25}$ = .8 \longrightarrow S = .8(15) = 12 inches

Word Problem Practice

The simple interest I (in dollars) for a savings account is jointly proportional to the product of the time t (in years) and the principal P (in dollars). After nine months, the interest on a principal of \$3500 is \$91.88. What will the interest on the account be after 5 years?

I=KtP 91.88=K(72)(3500) (I=.035tP 91.88=2625K K=.03500.* store for x

I = .035(5)(3500)	
E=\$612.53 \ Bir+	

23. Boyle's Law states that for a constant temperature, the pressure P of a gas varies inversely with its volume V. A sample of hydrogen gas has a volume of 8.56 cubic liters at a pressure of 1.5 atmospheres. Find the volume of the hydrogen gas if the pressure changes to 1.2 atmospheres.

V = K V V = K 850

K=12.84

P= 12.84

1.2V = 12.8

1.2V = 12.84V = 10.7 cubic liters

24. The illumination in luxes (I) of a surface varies inversely with the square of the distance in meters (d) from the light source to the surface. One meter away from a certain light the illumination is 750 luxes. Write an equation that relates I and d. Then find the illumination at a distance of 2 meters.

 $I = \frac{k}{d^2}$

$$I = 150 = 150$$
 $Z^2 + 4$

750= K

- K=150
- 25. The power in watts of an electrical circuit varies jointly as the resistance and the square of the current. For a 600-watt microwave oven that draws a current of 5.0 amperes, the resistance is 24 ohms. What is the resistance of a 200-watt refrigerator that draws a current of 1.7 amperes?

 $P = Krc^{2}$ $600 = K(24)(5)^{2}$

 $200 = r(17)^2$

200=2.89r 6r=69.20 ohms