Algebra 2 Unit 2A Test Review Quadratic Functions and Relations

Name: \qquad
Date: \qquad Block: \qquad
Target 1: State the domain and range of any relation or function in set builder and interval notation.
1-6: Determine whether each is the graph of a function then state the domain and range in either notation.
1.

Function? Yes No
D: \qquad

R: \qquad
2.

Function? Yes No
D: \qquad

R: \qquad
4.
Function? Yes No
D: \qquad
6.

Function? Yes No
D: \qquad

R:
Function? Yes No
D: \qquad

R: \qquad

R: \qquad

R \qquad

Target 2: I CAN graph a quadratic function, and state all of its parts (vertex, roots/zeros, intercepts, axis of symmetry, domain and range) in any form (standard, vertex, intercept) with and without a graphing calculator

7-9: Graph each function and fill in the blanks. Express the domain and range using interval notation.

vertex: \qquad roots: \qquad y-intercept: \qquad
domain: \qquad range: \qquad axis of symmetry: \qquad
Does this parabola open UP or DOWN ? circle one
Circle the equation that does NOT have the same ZEROS as $\mathbf{f}(\mathbf{x})$:

$$
\begin{array}{ll}
y=x^{2}+8 x+7 & y=x^{2}+8 x-7 \\
y=-x^{2}-8 x-7 & y=-2 x^{2}-16 x-14
\end{array}
$$

Which equation is the standard form for $\mathrm{f}(\mathrm{x})$? \qquad

Target 3: I CAN apply knowledge of quadratics in real-life contexts (using the graphing calculator and Desmos). 10-12: Read each problem clearly and use the calculator or Desmos to find each answer.

Round all answers to the nearest hundredth.

10.Bill is using 150 feet of fencing to enclose a rectangular area for his garden. A diagram of the garden is shown below.	The function $f(x)=x(75-x)$ represents the area of the enclosure. What is the maximum area that Bill can enclose with the fencing?		
11. Lorryana is a competitive diver. When competing on the $10-m e t e r ~ d i v i n g ~ p l a t f o r m, ~ s h e ~ m u s t ~ j u m p ~$			
upward and outward before diving into the pool below.			
The function $f(x)=-(6 x+5)(x-2)$ represents her			
height off the ground as			
compared to her time in the air.		\quad	a. What is the maximum height that Lorryana
:---			
reaches?			
b. How many seconds is Lorryana in the air when			
she reaches her maximum height?			

12. A study compared the speed x (in miles per hour) and the average fuel economy y (in miles per gallon) for cars. The results are shown in the table below:

Speed, \mathbf{x}	Fuel Economy, \mathbf{y}
15	22.3
20	25.5
25	27.5
30	29.0
35	28.8
40	30.0
45	29.9
50	30.2
55	30.4
60	28.8
65	27.4
70	25.3

a. Find the best fitting quadratic model for the data and write your equation rounded to the nearest hundredth.
b. What speed maximizes the car's fuel economy?
c. Predict what the gas mileage would be if the speed was 63 miles per hour.

Target 4: I CAN factor quadratic expressions.

13-22: Fully factor each expression. Make sure to check for a GCF first.
13. $x^{2}+x-90$
14. $x^{2}-6 x+8$
15. $3 x^{2}-21 x-54$
16. $2 x^{2}-3 x-5$
17. $9 x^{2}-16$
18. $8 x^{2}-14 x-15$
19. $2 x^{2}+14 x-36$
20. $16 x^{2}-100$
21. $x^{2}+12 x+36$
22. $3 x^{2}-27 x+60$

