UNIT 5 DAY 01 OPERATIONS ON FUNCTIONS

Operations of Functions: Notation and Procedure			
Sum:	Difference:	Product:	Quotient:
$(f+g)(x)=f(x)+g(x)$	$(f-g)(x)==f(x)-g(x)$	$(f \cdot g)(x)=f(x) \cdot g(x)$	$\left(\frac{f}{g}\right)(x)=f(x) \div g(x)$

1-3: Perform the following operations for each problem.

1. $f(x)=8 x-3 ; g(x)=4 x+5$
2. $f(x)=x^{2}+x-6 ; g(x)=x-2$
a. $(f+g)(x)=$
b. $(f-g)(x)=$
c. $(f \cdot g)(x)=$
d. $\left(\frac{f}{g}\right)(x)=$
b. $(f-g)(x)=$
c. $(f \cdot g)(x)=$
d. $\left(\frac{f}{g}\right)(x)=$
3. $f(x)=3 x^{2}-x+5 ; g(x)=2 x-3$
a. $(f+g)(x)=$
b. $(f-g)(x)=$
c. $(f \cdot g)(x)=$
d. $\left(\frac{f}{g}\right)(x)=$

Introduction: Who has the better discount?

Claire and Jadire decide to go out to Taco Bell for lunch. (3) They each have a 50-cent coupon. In addition, if they show their PAHS student I.D. cards they will also get a 10% discount. Both of them ordered the \#3 chalupa value meal for $\$ 6.95$. Claire's server rang up her order using the value meal coupon, and then the PA 10\% discount. Jadire's server rang his up as a 10% discount, then the coupon. Who got the better deal?

Composition of functions

- the process of using the \qquad of one function as the \qquad of another function.
The results where evaluating a value of one function is used to evaluate a value of a second function.
- Composition of f and $g:$ written in the form $\left(f^{\circ} g\right)(x)=f(g(x))$

4-5: Given the graphed function, find each value algebraically and using the graph.
4.

$$
f(x)=\frac{3}{4} x-3 \quad \text { and } \quad g(x)=|x|
$$

a. $\quad \mathrm{f}(\mathrm{g}(-4))$
b. $\quad g(f(-4))$
c. $\quad f(g(2))$
d. $\quad g(f(2))$

e. $\quad f(g(-2))$
f. $\quad g(f(-2))$
5.

$$
f(x)=2 x-5 \text { and } \quad g(x)=\frac{1}{2}(x+5)
$$

a. $\quad f(g(-4))$
b. $g(f(-4))$
c. $\quad f(g(3))$
d. $g(f(3))$

6-8: Find $\left(f^{\circ} g\right)(x)$ and ($\left.g^{\circ} f\right)(x)$.
6. $f(x)=2 x+7 ; g(x)=-5 x-1$
7. $f(x)=x^{2}+2 x ; g(x)=x-9$
8. $f(x)=3 x-2 g(x)=1 / 3 x+2 / 3$

