1-4 Solving Absolute Value Equations

Absolute Value of x: |x| = the distance the number is from zero on a number line. Since this value is a distance it can never be negative!

Intro:

If
$$|2| =$$
 and $|-2| =$, then what is x if $|x| = 5$? $x =$ or $x =$

$$x = or x =$$

Steps to Evaluate an Expression with an Absolute Value:

- 1. Replace the variable with the given value.
- 2. Follow the order of operations to simplify the expression.

Examples:

2.7 + |6 - 2x| if x = 4

2.
$$2.3 - |3y - 10|$$
 if $y = 2$

Always follow these steps for success!

Steps to Solving Absolute Value Equations:

- Isolate the absolute value on one side of the equation.
- 2. Check to make sure that the equation is possible! $|x| \neq -\#$
- 3. Set up two equations, considering both the positive and negative values:
 - Drop the absolute value and keep the sign of the expression on the right.
 - Drop the absolute value and switch the sign of the expression on the right.
- Solve both equations.
- 5. Check both solutions with the original equation. Even if the correct procedure is used, the answers may not be actual solutions to the original equation. Such a number is called an extraneous solution.
- 6. Write your final answer. Because the absolute value of a number is always positive or zero, an equation like |x| = -4 is never true. This means it has no solution and would be an **empty set** written $\{\}$ or Ø.

Example:

Check your solution:

Therefore, x = -3 and x = -8 or $\{-8, -3\}$

Examples: Solve each equation. Check your solution before writing your final answer

1. |2x + 5| = 152x+5=15 2x+5=-15 -3|6-4t|=6 2x=10 2x=20 |6-4t|=-2

2.
$$-3|6-4t|-6=0$$
 $-3|6-4t|=6$
 $|6-4t|=-2$
 $-3|6-4t|=6$
 $-3|6-4t|=6=0$
 $-3|6-4t|=6$
 $-3|6-4t|=6$

