1-3 Distance and Midpoints

Objectives:

The student will be able to:

- *find the distance on the number line
- *find the distance in the coordinate plane

Distance on a Number Line

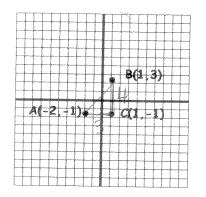
The distance between 2 points is

segment with those points as its

AB = |b - a| or |a - b|

Distance in the Coordinate Plane

Pythagorean Theorem:


$$a^2 + b^2 = c^2$$

Distance Formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$AB = \sqrt{(1 - (-2))^2 + (3 - (-1))^2}$$

$$= \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

Example 1:

Find AB.

Example 2:

Find the distance between A(-2,-1) and B(1,3).

$$AB = |(-4) - 2||$$

= $|-6|$
= 6

Try These:

Use Pythagorean Theorem:

$$(AB)^2 = (3)^2 + (4)^2$$

 $(AB)^2 = (AC)^2 + (BC)^2$

$$(AB)^2 = 9 + 16$$

$$(AB)^2 = 25$$

$$AB = \sqrt{25} = 5$$

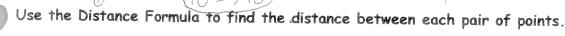
Use Distance Formula:

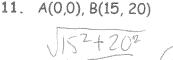
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$AB = \sqrt{(1 - (-2))^2 + (3 - (-1))^2}$$

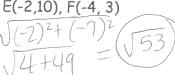
$$AB = \sqrt{(3)^2 + (4)^2}$$

$$AB = \sqrt{(3)^2 + (4)}$$


=
$$\sqrt{25}$$


Use the number line to find each measure.

Use the Pythagorean Theorem to find the distance between each pair of points.


9. A(0,0), B(6,8) $(0+8^2=AB^2)$

12. E(-2,10), F(-4,3)

The student will be able to: Objectives:

- *find the midpoint of a segment on a number line.
- *find the midpoint of a segment in a coordinate plane.
- *use algebra to find measures of segments.

Midpoint on a number line

- The midpoint of a segment is the ______ that is between the endpoints of the segment.
- Any segment, line or plane that in +CrICCT5 a segment at its midpoint is called a segment bisector
- If the coordinates of the endpoints of a segment are a and b, then the coordinate of the midpoint of the segment is.

$$\frac{a+b}{2}$$

Midpoint on a coordinate plane

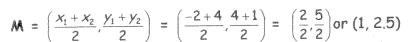
If a segment has endpoints with coordinates (x_1,y_1) and (x_2,y_2) , then the coordinates of the midpoint of the segment are:

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

If M is the midpoint of \overline{PQ} , then $\underline{PM} \cong \underline{MQ}$ (See the figure in example 1)

Example 1:

Find the coordinate of the midpoint of segment PQ.


The coordinates of P and Q are -3 and 1.

-3 -2 -1 0 1

If M is the midpoint of PQ, then the coordinate of M is_____

Example 2:

Find the coordinates of M if M is the midpoint of \overline{PQ} for P(-2,4) and Q(4,1).

Try these:

Use the number line to find the coordinate of the midpoint of each segment.

2. DG ____

3. AF ___3 4. EG 4.S

5. AB - 8

6. BG

Find the coordinates of the midpoint of a segment having the given endpoints.

9. A(0,0), B(12,8) (6,4)

10. R(-12,8), S(6,12) (-3, 10)

Find the endpoint of the segment if the midpoint and one endpoint are given.