Day 03 Notes on Polynomial Functions & End Behavior

Polynomial Vocabulary:

<u>Degree</u> of a polynomial- the highest exponent in the equation.

<u>Leading Coefficient</u>- First coefficient when the equation is in standard form.

<u>Increasing Intervals</u>- The parts of the graph where the value of the function is increasing (going up a roller coaster)

Decreasing Intervals- The parts of the graph where the value of the function is decreasing (going down a roller coaster)

<u>Turning Points</u>- Where the graph changes between increasing and decreasing intervals.

End Behavior- What the graph is approaching as it extends infinitely to the right and left.

y = -2x + 3

Y min -10 Y max 10

- a) Highlight the decreasing intervals on your sketch.
- b) Leading Coefficient: -2
- c) Degree Even or Odd? ODD
- d) Number of Turning Points? __O
- e) Arrows the same direction or opposite? <u>OPP.</u>

2. Quadratic (2nd Degree) $y = 3x^2 - 4$

Y min -10

Y max 10

- a) Highlight the increasing intervals on your sketch.
- b) Leading Coefficient: 3
- c) Degree Even or Odd? **EVEN**
- d) Number of Turning Points?
- e) Arrows the same direction or opposite? SAME
- 3. Cubic (3rd Degree) $y = 2x^3 x^2 13x 6$

Y min -25

Y max 15

- a) Highlight the increasing intervals on your sketch.
- b) Leading Coefficient: 2
- c) Degree Even or Odd? ODD
- d) Number of Turning Points? 2
- e) Arrows the same direction or opposite? <u>OPP</u>.

4. Quartic (4th Degree)

$$y = -3x^4 + 5x^3 + 17x^2 - 13x - 6$$

Y min -15

Y max 35

- a) Highlight the decreasing intervals on your sketch.
- b) Leading Coefficient: -3
- c) Degree Even or Odd? EVEN
- d) Number of Turning Points? 3
- e) Arrows the same direction or opposite? SAME

5.	Quintic (5th Degree)	$y=x^5-$	$10x^3 + 9x$

Y min -40 Y max 45

- a) Highlight the decreasing intervals on your sketch.
- b) Leading Coefficient:
- c) Degree Even or Odd? ODD
- d) Number of Turning Points? 나
- e) Arrows the same direction or opposite? <u>OPP.</u>

6. Hexic (6th Degree)

 $y = -x^6 - 2x^5 + 10x^4 + 20x^3 - 9x^2 - 18x$

Y min -20 Y max 140

- a) Highlight the increasing intervals on your sketch.
- b) Leading Coefficient:
- c) Degree Even or Odd? EVEN
- d) Number of Turning Points? 5
- e) Arrows the same direction or opposite? SAME

 What does the sign of leading coefficient tell me about the graph? In other words, what do I know about the graph when it is a positive leading coefficient versus a negative?

+ LC: It will go up in the end. VI V - LC: It will go down in the end.

• What does the degree tell me about the arrows (or end behavior)?

EVEN: Arrows will go in same direction.

• What does the degree tell me about the number of turning points?

There will be I less turning points ex: Degree 8 -> 7 turning points

• What does the degree tell me about the number of solutions (x-intercepts)?

The # of solutions will always = the degree The max # of x-intercepts will = the degree.

End Behavior

What happens to f(x) as x gets larger and smaller?

1)

As
$$x \to \infty$$
 $f(X) \to +\infty$

As
$$x \to -\infty$$
 $f(\lambda) \to +\infty$

2)

As
$$x \to \infty$$
 $f(x) \to +\infty$

As
$$x \to -\infty$$
 $f(X) \to -\infty$

3)

As
$$x \to \infty$$
 $+(x) \to -\infty$

As
$$x \to -\infty$$
 $f(x) \to +\infty$

4)

As
$$x \to \infty$$
 $f(x) \to -\infty$

As
$$x \to -\infty$$
 $+(x) \to -\infty$

5-7:	Without graphing the polynomial, fill in the information about the function using the equation	n.

- $5. \quad y = 8x^3 5x^2 + x 10$
 - a) What is the degree? 3
 - b) Is the degree even or odd? 000
 - c) What is the leading coefficient?
 - d) What is the maximum number of turning points? _______

 - f) Right side going up or down? <u>UP</u>
 - g) End behavior same or opposite? OPP.
 - **h)** End behavior: As $x \to \infty$ $f(x) \to +\infty$ As $x \to -\infty$ $f(x) \to -\infty$
- 6. $y = -2x^4 + 7x^2 + 3x$
 - a) What is the degree? <u></u>
 - b) Is the degree even or odd? EVEN
 - c) What is the leading coefficient? ______
 - d) What is the maximum number of turning points? 3
 - e) What is the maximum number of zeros?
 - f) Right side going up or down? DOWN
 - g) End behavior same or opposite? SAME
 - h) End behavior: As $x \to \infty$ $f(x) \to -\infty$ As $x \to -\infty$ $f(x) \to -\infty$

7.
$$y = x^6 - x^5 + 4x^3 + 9x^2 + 1$$

- a) What is the degree?_______
- b) Is the degree even or odd? EVEN
- c) What is the leading coefficient?_____
- d) What is the maximum number of turning points? 5
- e) What is the maximum number of zeros?___________
- f) Right side going up or down? U?
- g) End behavior same or opposite? SAME
- h) End behavior: As $x \to \infty$ $f(x) \to +\infty$

As
$$x \to -\infty$$
 $f(x) \to +\infty$