Day 03 Notes on Polynomial Functions \& End Behavior

Polynomial Vocabulary:

Degree of a polynomial- the highest exponent in the equation.
Leading Coefficient- First coefficient when the equation is in standard form.
Increasing Intervals- The parts of the graph where the value of the function is increasing (going up a roller coaster)
Decreasing Intervals- The parts of the graph where the value of the function is decreasing (going down a roller coaster)
Turning Points- Where the graph changes between increasing and decreasing intervals.
End Behavior- What the graph is approaching as it extends infinitely to the right and left.

5. Quintic (5 ${ }^{\text {th }}$ Degree) $y=x^{5}-10 x^{3}+9 x$
Y min -40
Y max 45
a) Highlight the decreasing intervals on your sketch.
b) Leading Coefficient: \qquad
c) Degree Even or Odd? \qquad
d) Number of Turning Points? \qquad
e) Arrows the same direction or opposite?
6. Hexic ($6^{\text {th }}$ Degree)

$$
y=-x^{6}-2 x^{5}+10 x^{4}+20 x^{3}-9 x^{2}-18 x
$$

Y min -20
Y max 140
a) Highlight the increasing intervals on your sketch.
b) Leading Coefficient: \qquad
c) Degree Even or Odd? \qquad
d) Number of Turning Points? \qquad
e) Arrows the same direction or opposite? \qquad

- What does the sign of leading coefficient tell me about the graph? In other words, what do I know about the graph when it is a positive leading coefficient versus a negative?
- What does the degree tell me about the arrows (or end behavior)?
- What does the degree tell me about the number of turning points?
- What does the degree tell me about the number of solutions (x-intercepts)?

End Behavior

What happens to $f(x)$ as x gets larger and smaller?
1)

As $x \rightarrow \infty$ \qquad

As $x \rightarrow-\infty$ \qquad
3)

As $x \rightarrow \infty$ \qquad
As $x \rightarrow-\infty$ \qquad
4)

As $x \rightarrow \infty$ \qquad

As $x \rightarrow-\infty$ \qquad

5-7: Without graphing the polynomial, fill in the information about the function using the equation.

5. $y=8 x^{3}-5 x^{2}+x-10$
a) What is the degree? \qquad
b) Is the degree even or odd? \qquad
c) What is the leading coefficient? \qquad
d) What is the maximum number of turning points? \qquad
e) What is the maximum number of zeros? \qquad
f) Right side going up or down? \qquad
g) End behavior same or opposite? \qquad
h) End behavior: As $x \rightarrow \infty \quad f(x) \rightarrow$

$$
\text { As } x \rightarrow-\infty \quad f(x) \rightarrow
$$

6. $y=-2 x^{4}+7 x^{2}+3 x$
a) What is the degree? \qquad
b) Is the degree even or odd? \qquad
c) What is the leading coefficient? \qquad
d) What is the maximum number of turning points? \qquad
e) What is the maximum number of zeros? \qquad
f) Right side going up or down? \qquad
g) End behavior same or opposite? \qquad
h) End behavior: As $x \rightarrow \infty \quad f(x) \rightarrow$

$$
\text { As } x \rightarrow-\infty \quad f(x) \rightarrow
$$

7. $y=x^{6}-x^{5}+4 x^{3}+9 x^{2}+1$
a) What is the degree? \qquad
b) Is the degree even or odd? \qquad
c) What is the leading coefficient? \qquad
d) What is the maximum number of turning points? \qquad
e) What is the maximum number of zeros? \qquad
f) Right side going up or down? \qquad
g) End behavior same or opposite? \qquad
h) End behavior: As $x \rightarrow \infty \quad f(x) \rightarrow$

$$
\text { As } x \rightarrow-\infty \quad f(x) \rightarrow
$$

