Day 04 Properties of Logarithms

PRODUCT PROPERTY	QUOTIENT PROPERTY	POWER PROPERTY
Introduction: $\begin{gathered} \log _{3}(9 \cdot 27)=\log _{3}\left(3^{2} \cdot 3^{3}\right)= \\ \log _{3} 3^{2+3}=2+3=5 \end{gathered}$ When you multiply monomials with like bases, you ADD the exponents!!	Introduction: $\begin{gathered} \log _{3}\left(\frac{81}{27}\right)=\log _{3}\left(\frac{3^{4}}{3^{3}}\right)= \\ \log _{3} 3^{4-3}=4-3=1 \end{gathered}$ When you divide monomials with like bases, you SUBTRACT the exponents!	Introduction: $\begin{aligned} & \log _{3} 9^{4}=\log _{3}\left(3^{2}\right)^{4}= \\ & \log _{3} 3^{204}=2 \cdot 4=8 \end{aligned}$ When you raise a monomial to a power, you MULTIPLY the exponents!
Conclusion: Since a logarithm is an exponent, then you "expand" and add the logs.	Conclusion: Since a logarithm is an exponent, then you "expand" and subtract the logs.	Conclusion: Since a logarithm is an exponent, then you multiply the power times the log.
PRODUCT Property $\begin{gathered} \log _{b} m n=\log _{b} m+\log _{b} n \\ m>0, n>0, \& b \neq 1 \end{gathered}$	QUOTIENT Property $\begin{aligned} \log _{b} \frac{m}{n} & =\log _{b} m-\log _{b} n \\ m & >0, n>0, \& b \neq 1 \end{aligned}$	POWER Property $\log _{b} m^{p}=p \log _{b} m$ p must be real, $m>0, b>0 \text { and } b \neq 1$
Example: $\begin{gathered} \log 5+\log 3=\log x \\ \log (5 \cdot 3)=\log x \\ \log 15=\log x \\ 15=x \rightarrow x=15 \end{gathered}$	Example: $\begin{gathered} \log _{5} 8-\log _{5} 2=\log _{5} 2 x \\ \log _{5}\left(\frac{8}{2}\right)=\log _{5} 2 x \\ \frac{8}{2}=2 x \rightarrow 4=2 x \rightarrow x=2 \end{gathered}$	Example: Evaluate $\log _{3} 9^{4}$ $\log _{3} 9^{4}=4 \log _{3} 9$, since $\log _{3} 9=2$ (because $3^{2}=9$) $\log _{3} 9^{4}=4 \cdot 2=8$
1-9: Expand each expression.		
1. $\log _{6} 3 x$	2. $\log _{2} \frac{x}{5}$	3. $\log x y^{2}$
4. $\log _{4} \frac{x y}{3}$	5. $\log _{3} \sqrt{x} y z$	6. $\log _{5} 2 \sqrt{x}$
7. $\log \frac{x^{2}}{4}$	8. $\log \frac{10}{\sqrt{x}}$	9. $\log _{2} \frac{x^{2} y}{z}$

10-15: Condense each expression.

10. $\log _{3} 7-\log _{3} x$	11. $2 \log _{5} x+\log _{5} 3$	12. $\log _{4} 5+\log _{4} x+\log _{4} y$
13. $\frac{1}{2} \log x-\log 4$	14. $\frac{2}{3} \log _{2} x-3 \log _{2 y}$	15. $\log _{3} 4+2 \log _{3} x-\log _{3} 5$
The pH of a patient's blood can be calculated using the Henderson-Hasselbach Formula, pH $=6.1+\log \frac{B}{C}$, where B is the concentration of bicarbonate and C is the concentration of carbonic		
acid. The normal pH blood is approximately 7.4.		

19-24: Solve each equation. Round to three decimal places when necessary.
19. $\log _{2} x+\log _{2}(x+1)=1$
21. $\log (x+2)+\log (x-3)=\log (x+29)$
23. $3 \log _{5}\left(x^{2}+9\right)-6=0$
24. $\log _{2} x=5 \log _{2} 2-\log _{2} 8$

