Day 04 Properties of Logarithms

PRODUCT PROPERTY	QUOTIENT PROPERTY	POWER PROPERTY		
Introduction:	Introduction:	Introduction:		
log ₃ (9•27) = log ₃ (3 ² •3 ³) = log ₃ 3 ²⁺³ = 2 + 3 = 5	$\log_3\left(\frac{81}{27}\right) = \log_3\left(\frac{3^4}{3^3}\right) =$	log₃9 ⁴ = log₃(3²) ⁴ = log₃3 ^{2•4} = 2 • 4 = 8		
When you multiply monomials with	log ₃ 3 ⁴⁻³ = 4 - 3 = 1	When you raise a monomial to a		
like bases, you ADD the exponents!!	When you divide monomials with	power, you MULTIPLY the		
	like bases, you SUBTRACT the	exponents!		
	exponents!			
Conclusion:	Conclusion:	Conclusion:		
Since a logarithm is an exponent,	Since a logarithm is an exponent,	Since a logarithm is an exponent,		
then you "expand" and add the logs.	then you "expand" and subtract the	then you multiply the power times		
	logs.	the log.		
PRODUCT Property	QUOTIENT Property	POWER Property		
$\log_b mn = \log_b m + \log_b n$	log _b <u>m</u> = log _b m − log _b n	log₀ m ^p = p log₀ m		
m > 0, n > 0, & b ≠ 1	" m>0,n>0,&b≠1	p must be real,		
		m > 0, b > 0 and $b \neq 1$		
Example:	Example:	E×ample:		
log 5 + log 3 = log x	loa5 8 - loa5 2 = loa5 2x	Evaluate log ₃ 9 ⁴		
log (5•3) = log ×	$\log_{10}\left(\frac{8}{2}\right) = \log_{10} 2x$	$\log_3 9^4 = 4\log_3 9$,		
log 15 = log x		since $\log_3 9 = 2$ (because $3^2 = 9$)		
$15 = x \rightarrow x = 15$	$\frac{8}{2} = 2x \rightarrow 4 = 2x \rightarrow x = 2$	log₃ 9⁴ = 4 ∙ 2 = 8		
1-9: Expand each expression.				
1. log₀ 3×	2. $\log_2 \frac{x}{-1}$	3 . log xγ ²		
	5 5			
4. $\log_4 \frac{xy}{2}$	5. log₃√xγz	6. log₅2 √x		
3				
2	10	2		
7. log $\frac{x^{-1}}{4}$	8. log $\frac{10}{\sqrt{x}}$	9. $\log_2 \frac{x^2 \gamma}{z}$		
, T		Z		

10-15: Condense each expression.					
10 . log₃7 - log₃x	11 . 2log₅x + log₅3	3	12 . log₄5 + log₄x + log₄y		
13 . $\frac{1}{2}\log x - \log 4$	14 . $\frac{2}{3}\log_2 x - 3\log_2 x$	92Y	15. log ₃ 4 + 2log ₃ x - log ₃ 5		
The pH of a patient's blood can be calculated using the Henderson-Hasselbach Formula,					
pH = 6.1 + log $\frac{b}{C}$, where B is the concentration of bicarbonate and C is the concentration of carbonic					
acid. The normal pH blood is appr	roximately 7.4.				
16.Expand the right side of the formula.	17. A patient has a bicarbonate concentration of 24 and a carbonic acid concentration of 1.9. Find the pH of the patient's blood.		18. Is the patient's pH above or below normal?		
19-24: Solve each equation. Round to three decimal places when necessary.					
19 . log ₂ x + log ₂ (x + 1) = 1		20 . log(x + 1) - 3	= log ×		
21 . log(x + 2) + log (x - 3) = log (x + 29)		22 . log ₈ († + 10) - log ₈ († - 1) = log ₈ 12			
23 . 3log₅ (x ² + 9) - 6 = 0		24 . log₂x = 5log	₂ 2 - log ₂ 8		