Equations of Lin

3-4 Learning Target: Students will be able to write the equation of a line given a graph, the slope and yintercept, or 2 points. They will also be able to write the equation of a line if it is parallel or perpendicular to a given line. Lastly, they will be able to graph a line in any form.

Point-Slope Form: y-y₁=m(x-x₁) - MEMORIZE /

 \mathbf{m} is the slope of the line and $(\mathbf{x}_1, \mathbf{y}_1)$ are the coordinates of any point on the line.

Slope-Intercept Form: y = mx + b - MEMORIFF

m is the slope of the line and b is the y-intercept

b: the y-intercept is the point on the y-axis where the line crosses or intersects the y-axis, when x = 0.

Write an equation in slope-intercept form of the line with the given slope and y-intercept.

Slope -2 and y-intercept 4 a.

$$y = mx + b$$

$$y = -2x + 4$$

All you have to do is plug in m and b. @

b. You try: slope 5 and y-intercept 3

Write an equation in slope intercept form of the line with the given slope that contains the given point. 2.

Slope $-\frac{3}{4}$ through (8, 1). $y - y_1 = m(x - x_1)$

$$y - y_1 = m (x - x_1)$$

$$y-1=-\frac{3}{4}(x-8)$$

$$y-1=-\frac{3}{4}x+6$$

$$y = -\frac{3}{4}x + 7$$

b. You try: slope = $\frac{1}{3}$ through (-6, 5)

$$y-5=\frac{1}{3}(x-(-6))$$

 $y-5=\frac{1}{3}(x+6)$
 $y-5=\frac{1}{3}(x+6)$

Write an equation in slope-intercept form of the line having the given slope containing the given point.

 $m = \frac{2}{3}$ and (3,1) $y - y_1 = m(x - x_1)$

$$y - y_1 = m(x - x_1)$$

$$y-1=\frac{2}{3}(x-3)$$

$$y-1=\frac{2}{3}x-2 \left(\frac{2}{3}\bullet 3=2\right)$$

$$y = \frac{2}{3}x - 1$$

b. You try: m = 5 and (2,3)

$$y-3=5(x-2)$$

$$y-3=5x-10$$
 $y=5x-7$

Write an equation in slope-intercept form of the line going through the given points.

Find the slope first. Then use either point to plug into point slope form.

a. (-2, 4) and (8, 10)
$$m = \frac{10-4}{8-(-2)} = \frac{6}{10} = \frac{3}{5}$$

$$y-4=\frac{3}{5}(x-(-2))$$

$$y-4=\frac{3}{r}(x+2)$$

$$y-4=\frac{3}{5}x+\frac{6}{5}$$

$$y = \frac{3}{5}x + \frac{6}{5} + \frac{20}{5} \quad (+4 = +\frac{20}{5})$$

$$y = \frac{3}{5}x + \frac{26}{5}$$

b. You try:
$$(-3, -7)$$
 and $(-1, 3)$ $M = \frac{3 - (-7)}{-1 - (-3)} = \frac{10}{2} = \frac{10}{2}$

$$y-3=5(x-(-1))$$

 $y-3=5(x+1)$
 $y-3=5x+5$
 $y=5x+8$

Write an equation of the line described below that relates to the line $y = \frac{1}{5}x + 2$. Then graph it.

It is perpendicular to the line and contains (2, 0) If it is perpendicular to y = -x + 2, then the slope is -5.

$$y = -5x + 10$$

b. You try: It is parallel to the line and contains (1, 4)

Use the graph to write an equation in slope intercept form for each line shown or described.

a.
$$\overline{AB}$$
 $M = \frac{6}{2} = 3$ $b = 4$ $\boxed{4 = 3x + 4}$

b.
$$\overline{CD} = \frac{4}{2} = -2$$
 $b = -2$ $y = -2x - 2$

- g. The line parallel to \overrightarrow{AB} and contains (4,2) y-2=3(x-4) y-2=3x-10 y-2=3x-10
- **h.** The line perpendicular to \overrightarrow{CD} and contains (0,3)

$$m\overrightarrow{CD} = -2$$
 : $m = \frac{1}{2}$

$$y-3=\pm(x-0)$$

 $y-3=\pm x = y=\pm x+3$