6-5 Solving Polynomials by Factoring

FACTORING ORDER OF OPERATIONS

FACTOR OUT THE GCF

LOOK FOR A PATTERN!

BINOMIALS

Difference of Squares $a^2 - b^2 = (a + b)(a - b)$

Difference/Sum of Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

OTHER

Factor by Grouping

Use when there are 4 or more terms

Look at the terms in pairs $x^2 - 2xy + x - 2y = (x^2 - 2xy) + (x - 2y)$ Factor out the GCF of each pair = x(x - 2y) + 1(x - 2y)

(x-2y) is the new GCF of the 2 new terms! = (x-2y)(x+1)

Practice factoring the sum or difference of cubes.

1.
$$x^3 + 64$$
 $(\chi + 4)(\chi^2 - 4\chi + 16)$

2.
$$x^3 - 343$$
 $(\chi - 7)(\chi^2 + 7\chi + 49)$

4.
$$27x^3 + 1$$
 $(3x+1)(9x^2-3x+1)$

5.
$$64x^3 + 27$$
 $(4x+3)(16x^2-2x+9)$

Practice factoring by grouping.

7.
$$6xy + 8x - 21y - 28$$

 $2x(3y+4) - 7(3y+4)$
 $(3y+4)(2x-7)$

8. 3xy - 21y + 5x - 35 3y(x-7) + 5(x-7)(x-7)(3y+5)

Practice factoring the difference of two squares.

10.
$$16x^4 - 81$$

 $(4x^2+9)(4x^2-9)$
 $(4x^2+9)(2x+3)(2x-3)$

11. $10x^2 - 40$ $10(x^2 - 4)$ 10(x+2)(x-2)

Practice factoring higher degree trinomials.

13.
$$x^5 + 4x^4 - 32x^3$$

 $\times^3(x^2 + 4x - 32)$
 $\times^3(x + 8)(x - 4)$

14.
$$x^4 + x^2 - 6$$
 $(x^2 + 3)(x^2 - 2)$

TRINOMIALS

Trinomial Squares

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)^{2}$

$x^2 + bx + c$

Find 2 #'s whose sum is b and product is c

$ax^2 + bx + c$

Find 2 #'s whose sum is b and product is a • c, and factor using the slip-slide method

3. $8m^3 - 1$ $(2m-1)(4m^2 + 2m+1)$

6.
$$4x^{6} + 108y^{3}$$

 $4(x^{6} + 27y^{3})$
 $4(x^{2} + 3y)(x^{4} + 3x^{2}y + 9y^{2})$

9.
$$8\dot{m}^2n - 5m - 24mn + 15$$

 $m(8mn-5) - 3(8mn-5)$
 $(8mn-5)(m-3)$

12.
$$x^4 - 625$$

 $(x^2 + 25)(x^2 - 15)$
 $(x^2 + 25)(x + 5)(x - 5)$

15.
$$x^4 - 8x^2 - 9$$

 $(x^2 - 9)(x^2 + 1)$
 $(x+3)(x-3)(x^2 + 1)$

Solve each polynomial function: Factor first, then set each factor equal to zero and solve completely.

16.
$$x^4 + x^2 - 6 = 0$$

 $(x^2 + 3)(x^2 - 2) = 0$
 $x^2 + 3 = 0$ $x^2 - 2 = 0$
 $x^2 = -3$ $x^2 = 2$
 $x = \pm i\sqrt{3}$ $x = \pm \sqrt{2}$

19.
$$x^3 + 6x^2 - 4x - 24 = 0$$

 $x^2(x+6) - 4(x+6)$
 $(x+6)(x^2-4) = 0$
 $(x+6)(x+2)(x-2) = 0$

22.
$$x^{3}-8=0$$

 $(x-2)(x^{2}+2x+4)$
 $x=2$ $-2\pm\sqrt{4-4(4)}$
 $-2\pm\sqrt{-12}$
 $-2\pm\sqrt{1+1\sqrt{3}}$ $-2\pm2i\sqrt{3}$

25.
$$27x^4 - 3x^2 = 0$$

 $3x^2(9x^2 - 1) = 0$
 $3x^2(3x + 1)(3x - 1) = 0$

17.
$$3x^4 - 3 = 0$$

 $3(x^4 - 1)$
 $3(x^2 + 1)(x^2 - 1)$
 $3(x^2 + 1)(x + 1)(x - 1) = 0$
 $x^2 + 1 = 0$
 $x = \pm 1$
 $x = \pm 1$

20.
$$3x^3 - x^2 + 3x - 1 = 0$$

 $\chi^2(3x-1) + 1(3x-1)$
 $(3x-1)(x^2+1) = 0$
 $3x-1=0$ $x^2+1=0$
 $3x=1$ $x^2=-1$
 $x=\frac{1}{3}$ $x=1$

23.
$$x^4 - x^2 - 12 = 0$$

 $(x^2 - 4)(x^2 + 3) = 0$
 $(x+2)(x-2)(x^2+3) = 0$
 $(x=\pm 2, \pm i\sqrt{3})$

26.
$$x^4 - 4x^2 - 5 = 0$$

 $(x^2 - 5)(x^2 + 1) = 0$
 $(x = \pm 5)(x^2 + 1) = 0$

18.
$$2x^4 - 200x^2 = 0$$

 $2x^2(x^2 - 100)$
 $2x^2(X+10)(X-10)$

$$x=0,0,\pm 10$$

21. $x^4-10x^2+9=0$

21.
$$x^4 - 10x^2 + 9 = 0$$

 $(x^2 - 9)(x^2 - 1) = 0$
 $(x+3)(x-3)(x+1)(x-1) = 0$

24.
$$8x^{3} + 1000 = 0$$

 $8(x^{3} + 125) = 0$
 $8(x+5)(x^{2}-5x+25)$
 $x=-5$ $5t\sqrt{25-4(25)}$

$$\chi = -5$$
 $5 \pm \sqrt{51}$
 5 ± 51
 5 ± 51
 5 ± 51
 5 ± 51
 5 ± 51

27.
$$121x^2 - 49 = 0$$

$$(11x + 1)(11x - 1) = 0$$

$$(x = \pm 1)$$