Day 05 Operations with Radical Expressions

Simplify Radicals: Finding the square root of a number and squaring a number are \qquad operations. Also, the inverse of raising a number to the nth power is finding the \qquad root of a number.

The $\mathbf{n}^{\text {th }}$ Root of a Number: To solve a square root you must find the number that, when multiplied by itself, results in the radicand. To solve an $\mathrm{n}^{\text {th }}$ root you must find the number that, when multiplied by itself n times, results in the radicand.

Suppose n is an integer greater than 1 and a is a real number. The following will be true.

\mathbf{a}	If \mathbf{n} is even:	If \mathbf{n} is odd:
$\mathrm{a}>0$	There are 2 real roots: $\sqrt[4]{16}= \pm 2$	There is one real positive root: $\sqrt[5]{32}=2$
$\mathrm{a}<0$	There are no real roots: $\sqrt[4]{-16}=$ no real roots	There is one real negative root: $\sqrt[3]{-64}=-4$
$\mathrm{a}=0$	This is one root: $\sqrt[n]{0}=0$	This is one root: $\sqrt[n]{0}=0$

Principal Root: Some numbers have more than one real nth root. For example, 64 has 2 square roots, ± 8, since 8^{2} and $(-8)^{2}$ both equal 64 . When n is even, there is more than one real root; the positive root is called the principal root.
Formulas: $\left.\sqrt[n]{9} \sqrt[n]{a^{n}}=\ldots \quad \sqrt[n]{a^{2 n}}=\ldots \sqrt[n]{a^{3 n}}=\quad \sqrt[n]{a^{m}}=\quad a+b\right)^{n}=\ldots$

1-14: Simplify each expression. Pay attention to the details... signs DO matter!

| 1. $\sqrt{36}$ | $2 . \quad \pm \sqrt{36}$ | $3 .-\sqrt{36}$ | $4 . \quad \sqrt{-36}$ | $5 . \quad-\sqrt{-36}$ | $6 . \quad \sqrt[3]{64}$ | 7. | $-\sqrt[3]{64}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8. $\sqrt[3]{-64}$ | 9. | $-\sqrt[3]{-64}$ | 10. $\sqrt[4]{81}$ | $11 . \quad-\sqrt[4]{81}$ | 12. $\sqrt[4]{-81}$ | 13. $\sqrt[4]{x^{8}}$ | $14 . \sqrt[3]{x^{12}}$ |

Approximate $\mathbf{n}^{\text {th }}$ roots with a calculator: Example: $\sqrt[5]{32}$

Option 1: Use the MATH menu and the $\sqrt[x]{ }$ function. First input n, then $\sqrt[x]{ }$, then the radicand, then ENTER. (Keystrokes: $5 \rightarrow$ MATH $\rightarrow \sqrt[x]{ } \rightarrow 32 \rightarrow$ ENTER $=2$)

Option 2: \quad Enter $32^{\wedge}(1 \div 5) \rightarrow$ ENTER

15-18: Use a calculator to approximate each value to three decimal places.

15. $\sqrt{1050}$	16. $\sqrt[3]{-15}$	$17 \cdot \sqrt[5]{100}$	$18 .-\sqrt[4]{500}$

19-22: Write each expression in simplified radical form.

19. $\sqrt{x^{2}-4 x+4}$	20. $\sqrt[3]{-(y-9)^{9}}$	$21 \cdot \sqrt[8]{x^{16} y^{8}} \sqrt[8]{x^{16} y^{8}}$	$22 . \pm \sqrt{49 x^{4}}$

- The index n is as small as possible
- The radicand contains no factors other than 1 that are nth powers of an integer or polynomial
- The radicand contains no fractions
- No radicals appear in a denominator

23-26: Simplify each radical completely.

23. $\sqrt{12 \mathrm{c}^{6} \mathrm{~d}^{3}}$
24. $\sqrt[3]{27 y^{12} z^{7}}$
25. $\sqrt{50 a^{5} b^{9}}$
26. $\sqrt[3]{250 m^{30} p^{20}}$

Multiplying Radicals: You must use the Product Property.

PRODUCT PROPERTY: $\sqrt[n]{a \bullet b}=\sqrt[n]{a} \bullet \sqrt[n]{b}$	Examples: $a .$a. $\sqrt[3]{25} \bullet \sqrt[3]{5}=\sqrt[3]{25 \bullet 5}=\sqrt[3]{125}=5$ n can be odd or even $(a \& b$ must be positive $)$
b. $\sqrt[4]{64}=\sqrt[4]{16 \bullet 4}=\sqrt[4]{16} \bullet \sqrt[4]{4}=2 \sqrt[4]{4}$	

27-28: Simplify each radical completely.

27. $6 \sqrt{8 c^{3} d^{5}} \cdot 4 \sqrt{2 c d^{3}}$
28. $5 \sqrt[3]{100 a^{2}} \cdot \sqrt[3]{10 a}$

Dividing Radicals: You must use the Quotient Property or Rationalize the Denominator when it doesn't reduce.

QUOTIENT PROPERTY: $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	a. $\frac{\sqrt[3]{32}}{\sqrt[3]{4}}=\sqrt[3]{\frac{32}{4}}=\sqrt[3]{8}=2$
n must be positive and b can't equal zero	b. $\sqrt[4]{\frac{7}{8}}=\frac{\sqrt[4]{7}}{\sqrt[4]{8}}=\frac{\sqrt[4]{7}}{\sqrt[4]{2^{3}}} \bullet \frac{\sqrt[4]{2}}{\sqrt[4]{2}}=\frac{\sqrt[4]{7 \bullet 2}}{\sqrt[4]{2^{4}}}=\frac{\sqrt[4]{14}}{2}$

How to Rationalize the Denominator

If the denominator is:	Multiply the numerator and denominator by:	Examples:
\sqrt{b}	\sqrt{b}	$\frac{3}{\sqrt{2}}=\frac{3}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}$
$\sqrt[n]{b^{x}}$	$\sqrt[n]{b^{n-x}}$	$\frac{6}{\sqrt[4]{2}}=\frac{6}{\sqrt[4]{2}} \cdot \frac{\sqrt[4]{2^{3}}}{\sqrt[4]{2^{3}}}=\frac{6 \sqrt[4]{8}}{2}=3 \sqrt[4]{8}$
$a \sqrt{b}+c \sqrt{d}$ Or $a \sqrt{b}-c \sqrt{d}$	$a \sqrt{b}-c \sqrt{d}$ $O r$	

29-32: Simplify each radical completely.
29. $\frac{\sqrt{15}}{\sqrt{2}}$
30. $\sqrt{\frac{y^{8}}{x^{7}}}$
31. $\sqrt[3]{\frac{2}{9 x}}$
32. $\sqrt[4]{\frac{3}{4 y}}$

Adding \& Subtracting Radicals: You must have like terms to add or subtract radicals!

Two radicals are like radicals if they have the same index and the same radicand. Use the distributive property t add or subtract like radicals

Example:
$5 \sqrt[4]{x^{3}}-3 \sqrt[4]{x^{3}}=(5-3) \sqrt[4]{x^{3}}=2 \sqrt[4]{x^{3}}$

33-34: Simplify each radical completely.

33. $3 \sqrt{45}-5 \sqrt{80}+4 \sqrt{20}$
34. $9 \sqrt[3]{16}+3 \sqrt[3]{2}-\sqrt[3]{128}$
