Unit 5 Day 05 Simplifying Radicals Notes/HW

Note: When there is no index shown, the index is understood to be 2 (square root)

$$
\sqrt{a^{2}}=\quad \sqrt{a \cdot a}=\quad(\sqrt{a})^{2}=
$$

A radical is in simplest form when:

1. The radicand has no perfect root factors
2. The radicand does not contain a fraction.
3. There is no radical in the denominator.
4. The radicand does not have any exponents greater than the index.

To simplify a radical when the radicand contains a perfect factor, use the:

$$
\text { PRODUCT PROPERTY }=\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

Examples:
a. $\sqrt{8}=\sqrt{4} \cdot \sqrt{2}=2 \sqrt{2}$
b. $\sqrt{96}=\sqrt{16} \cdot \sqrt{6}=4 \sqrt{6}$
c. $2 \sqrt{12} \cdot 5 \sqrt{5}=2 \cdot 5 \cdot \sqrt{12} \cdot \sqrt{5}=10 \sqrt{4} \sqrt{3} \cdot \sqrt{5}=20 \sqrt{15}$

1-9: Simplify the following square roots:

1. $\sqrt{72}$	2. $\quad 4 \sqrt{320}$	3. $2 \sqrt{10} \cdot 3 \sqrt{5}$
4. $\sqrt{32 x^{4} y^{9}}$	5• $\sqrt{324 a^{3} b^{7}}$	
7• $\sqrt{5} \cdot \sqrt{10}$	6. $5 \sqrt{150}$	
10-15: Simplify the following cube roots:	9. $3 \sqrt{49 x^{9} y^{16}}$	
10. $\sqrt[3]{-64 x^{10} y^{21}}$	11. $\sqrt[3]{216 m^{3} n^{6}}$	12. $\sqrt[3]{-250}$

13. $3 \sqrt[3]{108}$	$14 \cdot 2 \sqrt[3]{48}$	$15 \cdot \sqrt[3]{-81 p^{2} q^{12}}$
16-21: Simplify the following cube roots:		
16. $\sqrt[4]{w^{4} v^{17}}$	$17 \cdot \sqrt[4]{48 m^{8} n^{3}}$	
19.6 $\sqrt[4]{405}$		18. $\sqrt[4]{625 c^{23} d^{11}}$
	$20.5 \sqrt[4]{112 c^{24} d^{13}}$	

() To simplify a fraction when the denominator contains a radical, you apply the quotient property of square roots. It is called "Rationalizing the Denominator".

QUOTIENT PROPERTY: $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
Rationalizing the Denominator: When there is a radical in the denominator, apply the following:

If the denominator is:	Multiply the numerator and denominator by:	Examples:
\sqrt{b}	\sqrt{b}	$\frac{3}{\sqrt{2}}=\frac{3}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}$

Examples:
a. $\sqrt{\frac{3}{5}}=\frac{\sqrt{3}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}==\frac{\sqrt{15}}{5}$
b. $\frac{1}{\sqrt{5}}=\frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{5}}{\sqrt{25}}=\frac{\sqrt{5}}{5}$
c. $\frac{6}{\sqrt{2}}=\frac{6}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{6 \sqrt{2}}{\sqrt{4}}=\frac{6 \sqrt{2}}{2}=3 \sqrt{2}$

22-24: Simplify the following by rationalizing the denominator:

22. $\frac{11}{\sqrt{3}}$

23. $\frac{\sqrt{27}}{\sqrt{2}}$
24. $\frac{5}{\sqrt{5}}$
