DIRECT VARIATION		INVERSE VARIATION	JOINT VARIATION
\mathbf{k} is the constant of variation - it is the part that never changes!			
$y=k x, k \neq 0 \quad k=\frac{y}{x}$ " y varies directly with x as x increases, y increas Example: $C=\Pi d(\Pi$ is		$y=\frac{k}{x}, k \neq 0 \quad k=x y$ " y varies inversely with x " as x increases, y decreases Example: $t=\frac{D}{r}(d$ is $k)$	$z=k x y, k \neq 0$ " z varies jointly with x and y " as x and y increase, z increases as x and y decrease, z decreases Example: $A=\frac{1}{2} b \bullet h\left(\frac{1}{2}\right.$ is $\left.k\right)$
Determining Variation Given an Equation: Solve the given equation for one of the variables (usually y) and compare it the general forms above. Examples: a. $x y=10 \longrightarrow y=\frac{10}{x} \quad \longrightarrow \quad$ inverse variation b. $\frac{y}{3}=x \quad \longrightarrow y=3 x \quad \longrightarrow \quad$ direct variation c. $\mathrm{x}+\mathrm{y}=5 \longrightarrow \mathrm{y}=-\mathrm{x}+5 \longrightarrow \quad$ neither (Direct Variation always has a y -int. of o)			
Practice: Tell whether x and y show direct or inverse variation. Remember to solve for y first!			
1. $x=\frac{y}{9}$	2. $y=\frac{1}{2} x$	3. $x y=0.1$	4. $\mathrm{y}=\mathrm{x}+5$
5. $x=4 y$	6. $x=\frac{5}{y}$	7. $x=\frac{y}{3}$	8. $\frac{2}{x}=\frac{7}{y}$

Steps to Writing a Variation Equation:

1. Write the correct variation formula.
2. Substitute the given values into your equation and find k.
3. Rewrite the equation with replacing k with the value you found in \#2.
4. Find the value of the variable by plugging in the new information into your variation equation.

Direct Variation: If y varies directly as x and $\mathrm{y}=-4$ when $\mathrm{x}=\frac{1}{3}$, then find y when $\mathrm{x}=8$. $y=k x \longrightarrow-4=k\left(\frac{1}{3}\right) \longrightarrow k=-12 \longrightarrow y=-12 x \longrightarrow y=-12(8) \longrightarrow y=-96$
Inverse Variation: If y varies inversely as x and $\mathrm{y}=-2$ when $\mathrm{x}=5$, then find y when $\mathrm{x}=2$.

$$
y=\frac{k}{x} \longrightarrow-2=\frac{k}{5} \longrightarrow k=-10 \rightarrow y=\frac{-10}{x} \rightarrow y=\frac{-10}{2} \longrightarrow y=-5
$$

Joint Variation: If z varies jointly as x and y and $\mathrm{z}=6$ when $\mathrm{x}=3$ and $\mathrm{y}=4$, find z when $\mathrm{x}=5$ and $\mathrm{y}=2$.
$z=k x y \rightarrow 6=k(3)(4) \rightarrow 6=12 k \rightarrow k=\frac{1}{2} \rightarrow \quad z=\frac{1}{2} x y \rightarrow z=\frac{1}{2}(5)(2) \rightarrow z=\frac{1}{2}(10) \rightarrow z=5$

Find the value of k for each scenario. Then write an equation replacing k with the value you found. Finally, find the value of the variable being asked for.

1. If y varies directly as x and $\mathrm{y}=8$ when $\mathrm{x}=2$, find y when $\mathrm{x}=6$.
2. If y varies directly as x and $\mathrm{y}=-16$ when $\mathrm{x}=6$, find x when $\mathrm{y}=-4$.
3. If y varies directly as x and $\mathrm{y}=132$ when $\mathrm{x}=11$, find y when $\mathrm{x}=33$.
4. If y varies jointly as x and z and $\mathrm{y}=24$ when $\mathrm{x}=2$ and $\mathrm{z}=1$, find y when $\mathrm{x}=12$ and $\mathrm{z}=2$.
5. If y varies jointly as x and z and $\mathrm{y}=60$ when $\mathrm{x}=3$ and $\mathrm{z}=4$, find y when $\mathrm{x}=6$ and $\mathrm{z}=8$.
6. If y varies jointly as x and z and $\mathrm{y}=12$ when $\mathrm{x}=-2$ and $\mathrm{z}=3$, find y when $\mathrm{x}=4$ and $\mathrm{z}=-1$.
7. If y varies inversely as x and $\mathrm{y}=16$ when $\mathrm{x}=4$, find y when $\mathrm{x}=3$.
8. If y varies inversely as x and $\mathrm{y}=3$ when $\mathrm{x}=5$, find x when $\mathrm{y}=2.5$.
9. If y varies directly as z and inversely as x and $\mathrm{y}=10$ and $\mathrm{z}=5$ when $\mathrm{x}=12.5$, find z when $\mathrm{y}=37.5$ and $\mathrm{x}=2$.

Determining Variation Given a Table of Values:

- Multiply each of the pairs. If the product is the same, then the values show an inverse variation.
- Divide each of the pairs. If the quotient is the same, then the values show a direct variation.
- If neither the product nor quotient is the same, then there is neither direct nor inverse variation.

Example: \quad| x | y |
| :---: | :---: |
| 1.5 | 20 |
| 2.5 | 12 |
| 4 | 7.5 |
| 5 | 6 |

$$
\begin{aligned}
& \text { When multiplying, the products all equal } 30 . \longrightarrow x y=30 . \\
& \text { Therefore, the values show an inverse variation. } \\
& { }^{*} 30 \text { is the constant of variation (k) and the equation is } y=\frac{30}{x} .
\end{aligned}
$$

Practice: Tell whether x and y show direct variation, inverse variation, or neither. If is direct or inverse, find k and then write the equation of the function.
10.

x	y
5	15
8	24
1.5	4.5
0.5	1.5

11.

x	y
3	5
5	21
4.5	16.25
7	45

12.

x	y
1	4
2	2
0.5	8
0.25	16

13.

x	y
3	6
7	10
2.5	5.5
5.7	8.7

How to Solve Word Problems:

1. Read the problem and determine what type of variation is represented.
2. Write the variation formula and substitute the given values into your equation to find k.
3. Do not round k ! If it is not a terminating decimal, write it as an improper fraction (premature rounding can completely change the final answer and make it way off!)
4. Rewrite the equation replacing k with the value you found in \#2.
5. Find the value of the variable by plugging in the new information into your variation equation.
6. Write your final answer using the correct units.
7. If your answer is an amount of money, remember to round to the nearest hundredth.

Example:

The length S that a spring will stretch varies directly with the weight F that is attached to the string. If a spring stretches 20 inches with 25 pounds attached, how far will it stretch with 15 pounds attached?

$$
\mathrm{S}=\mathrm{kF} \longrightarrow \mathrm{k}=\frac{20}{25}=.8 \longrightarrow \mathrm{~S}=.8 \mathrm{~F} \quad \mathrm{~K}(25) \longrightarrow .8(15)=12 \text { inches }
$$

14. The simple interest I (in dollars) for a savings account is jointly proportional to the product of the time t (in years) and the principal P (in dollars). After nine months, the interest on a principal of $\$ 3500$ is $\$ 91.88$. What will the interest on the account be after 5 years?
15. Boyle's Law states that for a constant temperature, the pressure P of a gas varies inversely with its volume V. A sample of hydrogen gas has a volume of 8.56 cubic liters at a pressure of 1.5 atmospheres. Find the volume of the hydrogen gas if the pressure changes to 1.2 atmospheres.
16. The illumination in luxes (I) of a surface varies inversely with the square of the distance in meters (d) from the light source to the surface. One meter away from a certain light the illumination is 750 luxes. Write an equation that relates I and d. Then find the illumination at a distance of 2 meters.
17. The power in watts of an electrical circuit varies jointly as the resistance and the square of the current. For a 600-watt microwave oven that draws a current of 5.0 amperes, the resistance is 24 ohms. What is the resistance of a 200-watt refrigerator that draws a current of 1.7 amperes?
