Algebra 2 \& Trigonometry Test Review
Unit 2B - Quadratic Functions and Relations

Name: \qquad
Date: \qquad Block: \qquad

Target 5: I CAN simplify an expression containing complex numbers and or radicals.

1-15: Simplify each expression. Circle your final answer.

1. $i+3+\sqrt{-4}$	2. $(-6-12 i)-(-8+23 i)$	$3 \cdot(7-3 i)(8+4 i)$
4. $\sqrt{-180}$	5. $(\sqrt{-32})(3 \sqrt{-48})$	
7. i^{163}		6. $3 \mathrm{3i})(-2 i)(5 i)$
13. $\frac{12-i}{3 i}$	$8 . i^{236}$	

Target 6: I CAN solve a quadratic equation over the set of complex numbers using the most efficient method (factoring, square roots /completing the square, or the quadratic formula).

16-27: Solve each quadratic using the most efficient method: factoring, taking square roots, completing the square, or the quadratic formula. There are 3 problems per method. Circle the final answer.

Irrational answers must be written in simplified radical form (no decimals).

16. $4 x^{2}+20=0$	17. $7 x^{2}+6 x+2=0$	18 $x^{2}-4 x=13$
19. $6=x^{2}-x$	$20 . x^{2}-2 x+10=0$	$21 \cdot 3(x+1)^{2}+4=22$
25. $x^{2}+16 x-7=0$	$26.4 x^{2}+5 x-6=0$	

Target 7: I CAN write a quadratic equation in any form given a combination of its parts.

28-36: Write a quadratic function in standard form for the information given.

Target 8: I CAN solve non-linear systems of equations algebraically and graphically.

37-39: Graph each system below. Then solve it algebraically in the space on the right.

37.

$y=x^{2}$
$y=8-x^{2}$

39.
$-2 x^{2}=y-9$
$y=3(x-2)^{2}-3$

ESSENTIAL QUESTION: Be able to answer the essential questions and related questions regarding the unit.

ESSENTIAL QUESTIONS: Be ready to do an essay on any of these questions on the test day!

1. How do the parameters of a function determine the shape of its graph?
2. How do you tell which method to solve quadratic equations is BEST?
3. Why is it important to learn a variety of methods for solving quadratic equations?
4. What are the zeros of a quadratic function and how can you tell what kind you have?
5. Describe what the discriminant can tell you about a quadratic function.
