Day 06 5-2 Solving Quadratic Equations by Graphing

What are the roots of a quadratic function and how do you find them?

The roots are the solutions to the equation when y=0, they are the x-intercepts or the zeros.

- 2. Draw a sketch of a quadratic function with the following characteristic. Then write an example of the function(s) in any form that would illustrate your sketch.
- 2 real roots

y= 2(x+5)(x-4)

b. only 1 real root (a double root)

 $y = 3(x-2)^2$

c. 2 imaginary roots

d. The vertex is a maximum

y = -3(x+1)(x-5)

e. The vertex is a minimum

4= = (x+4)(x-4)

f. 2 different functions that have the same roots

- 3. Write the formula for a quadratic function in:
- General/standard form:

M=ax2+lox+c

b. Vertex Form:

4=a(x-h)+k

c. Factored/Intercept Form:

4=a(x-p)(x-g)

4. Explain how you find the vertex of a quadratic equation when it is in:

a. General/standard form:

D Find x W X = 1/2

2) Plug x in & savefory.

b. Vertex Form:

Pick out his K (XHD)2+KI V(h, k)

 $(X_i Y_j) \Rightarrow (h_j K_j)$ c. Factored/Intercept Form:

- 1) Plot the 2 zeros
- 2) Find x by Pto
- 3) Plug In x to find y.

Solve each quadratic equation by graphing.

- **b.** $x^2 8x = -12$

Modeling Quadratics: Do you know how to use your calculator?

Round all answers to the nearest hundredth.

- 1. On a fourth down, the Cavs are just out of field goal range. Matt needs to kick the football high and short. This punt can be modeled by $y = -0.065x^2 + 1.2x + 18.5$, where x is the distance (in yards) the football is kicked and y is the height (in yards) the football is kicked.
 - a. Sketch the graph of the quadratic function and label the axes with the real-world meaning. (9.23, 24.44)

WINDOW: [-20,40,1,-10,30,1]

b. Find the greatest height of the football. 24.04 yards CALC+MAX (9.23, 24.04)

- 2. Retail prescription drug sales in the United States increased from 1995 to 2000 as shown in the given table.
 - Write the equation of the quadratic model that best fits your statistical data.

STAT -> CALC-> 5(QUAD. REG.) 4=1.41x2+7.44X+68.55

GO TO Y, PRESS VARS > 5: STATS - EQ - ENTER - will put ea In b. Predict what the drug sales will cost in 2015. Is this a valid prediction based

upon our data?
2015 would be 20 years since 1995; so what is y when x=20?

2ND TRACE > 1: VALUE -> X=20 \$781.64 billion

c. When were the drug sales at the lowest and what was the sales amount at that point? It would be in 1992 and the sales would CALC-3:MIN-> 12.58.74 billion

(-2.64,58.74)

WINDOW: [-25,25,1,-19,152,957,

STAT- EDIT-

Years

since

1995

0

2

3

Retail

Sales

of dollars)

68.6

89.1

103.0

121.7

140.7

(billions €

- 3. A study compared the speed x (in miles per hour) and the average fuel economy y (in miles per gallon) for cars. The results are shown in the table below.
 - a. Write the equation of the quadratic model that best fits your data. Round to 4 dec. places $N = -.0082 \times^2 + .7459 \times +13.4722$

Speed, x	15	20	25	30	35	40
Fuel aconomy, y	22.3	25.5	27.5	29.0	28.8	30.0
Speed, x	45	50	55	60	65	70
fuel economy, y	29.9	30.2	30.4	28.8	27.4	25.3

- b. At what speed will the fuel economy be at the maximum amount? 45.50 miles per hour CALC→MAX→ (45.4987, 30.4406)
- c. What is the average fuel economy at that speed? 30.44 miles per gallon
- d. What will the fuel economy be when the speed is 100 miles per hour? 6.09 miles per gallon what is y when x = 100? 6.093032