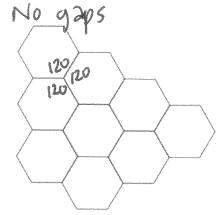
9-4 Tessellations

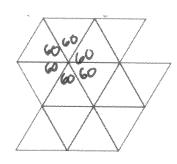
- * A <u>tesselation</u> is a pattern of one or more figures that covers a plane so that there are no over-lapping or empty spaces.
- * The sum of the measures of the angles of the polygons surrounding a vertex is 360°
- * A regular tessellation is formed by only one type of regular polygon.
- * A Semi-regular tessellation is formed by 2 or more regular polygons
- A regular polygon will tessellate if it has an interior angle measure that is a _____

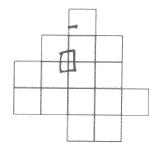
DETERMINE IF A REGULAR POLYGON WILL TESSELATE THE PLANE

n=	Measure of the interior angle		Does the polygon tessellate the plane?
3	60	yes	360 - 60 = 6
4	90	CAS	360-90=4
5	108	No	360+109=3,3
6	120	Yes	360-120=3
7	128.6	No	300 - 128.6 = 2.8
8	135	No	360 = 135 = 27
9	140	No	360 ÷ 140 = 2.6
10	144	No	360:144=2.5

1-3: Why do the following polygons create a tessellation?







of 360°

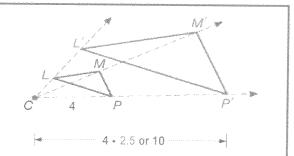
9-6 Dilations Master &

a figure proportionally with respect to a <u>Center</u> point and a <u>SCale</u> factor.

Understanding a Dilation:

A dilation with center C and positive scale factor k, $k \neq 1$, maps a point P in a figure to its image such that

- if point *P* and *C* coincide, then the image and preimage are the same point, or
- if point P is not the center of dilation, then P lies on \overrightarrow{CP} and CP' = k(CP).



 $\triangle L'MP'$ is the image of $\triangle LMP$ under a dilation with center C and scale factor of 2.5.

Understanding Dilations in the Coordinate Plane:

Words To find the coordinates of an image

after a dilation centered at the origin, multiply the *x*- and *y*-coordinates of each point on the preimage by the

scale factor of the dilation, k.

Symbols $(x, y) \rightarrow (kx, ky)$

The scale factor (k) = $\frac{\text{image side length}}{\text{preimage side length}} = \frac{\text{M'P'}}{\text{MP}}$

Example P(2,3) P(4,6) P(0,0) P(0,0)

1-2: Quadrilateral JKLM has vertices J(-2,4), K(-2,-2), L(-4,-2), & M(-4,2). Graph the image of JKLM after a dilation centered at the origin with the given scale factor .

Hint: Multiply the coordinates of each vertex by the scale factor k: $(x,y) \rightarrow (kx,ky)$ $(x,y) \rightarrow (2.5x,2.5y)$ $(x,y) \rightarrow (3.7x,3y)$ 1. k = 2.5 10 8 6 4 2 2 4 6 8 10 $L^1(-10,-5)$ 10 8 6 4 2 2 4 6 8 10 $L^1(-3,-1.5)$ 10 8 6 1 2 4 6 8 10 $L^1(-3,-1.5)$ 10 8 6 1 2 4 6 8 10 $L^1(-3,-1.5)$ 10 8 6 1 2 4 6 8 10 $L^1(-3,-1.5)$ 10 8 6 1 2 4 6 8 10 $L^1(-3,-1.5)$ 10 8 6 1 2 4 6 8 10 $L^1(-3,-1.5)$ 10 8 6 1 2 4 6 8 10 $L^1(-3,-1.5)$ 10 8 6 1 2 4 6 8 10 $L^1(-3,-1.5)$ 10 8 6 1 2 4 6 8 10