Day 07 Solving Non-Linear Systems Graphically Notes Name

\qquad

A system of equations is when you have two or more equations. The solution to the system is the set of coordinates that works for both equations. For a system of 2 quadratics, how many solutions can you have? For a system of a linear and a quadratic, how many solutions can you have? Sketch examples below.

1) Given the system $y=x^{2}-1$ and $y=(x-1)^{2}$
a. Is $(2,3)$ a solution?
b. Is $(1,0)$ a solution?

Solving a System by Graphing: For each problem, do the following.
A) Graph each function on the same coordinate plane (Hint: Think if you have the vertex or the zeros) B) Look for the intersection points, these are the solutions (name the full coordinate, x and y value)
2) $y=-2(x-2)^{2}+8$ $y=(x-2)^{2}+5$

4) $x+y=6$
$y=-(x-4)^{2}+4$

3) $y=\frac{1}{2} x^{2}+4$ $y=3 x^{2}-6$

5) $y=x^{2}$
$y=x+2$

Day 07 Solving Non-Linear Systems Graphically Homework

Solving a System by Graphing: For each problem, do the following.
A) Graph each function on the same coordinate plane (Hint: Think if you have the vertex or the zeros) B) Look for the intersection points, these are the solutions (name the full coordinate, x and y value)

1) $x+y=1$
$y=-(x+1)^{2}+4$

2) $y=x^{2}-4$
$y=3 x$

3) $y=-x^{2}-3$
$y=x^{2}-5$

4) $y=(x-1)^{2}+3$ $2 x+y=5$

