5.3 Inequalities in One Triangle

Name Block

	<u>, </u>	
Inequalities of a Triangle	Definition	Illustration
KEY CONCEPT:	For any real numbers a and b, a > b if an	
続い 。	only if there is a DOSITIVE number	$rc 6 \ge 4$ and
	such that $Q = b + C$	6 > 2.
PROPERTIES OF INEQUALITIES FOR REAL NUMBERS: For all numbers a, b, and c		
YOU MUST MEMORIZE THESE PROPERTIES AND BE ABLE TO APPLY THEM!		
Comparison		
•	a <u>b</u> , a <u>b</u> , or a <u>b</u> .	
Transitive	■ If a <u></u> b and b <u></u> c, then a <u></u> c.	
√ 4		
	■ If a b and b c, then a c.	
Addition & Subtraction		
B	■ If a b, then a + c b + c and a - c b - c.	
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	■ If a b, then a + c b + c and a - c b - c.	
Exterior Angle Inequality Theorem		
B The measure of an exterior angle of a triangle is		
	than the measure of either of its corresponding remote	
3		
	<u>interior</u> angles.	
	Since $m \ge 4 = m \ge 1 + m \ge \frac{3}{2}$, then it would make sense that	
1 2 4		
A	$m \angle 4 $ $m \angle 1$ and $m \angle 4 $ $m \angle 3$	
Angle-Side Relationships in Triangles		
If one side of a triangle is longer than another side, then the angle		
has a greater measure than the angle opposite the <u>OTNUV</u> side!		
 If one angle of a triangle has a greater measure than another angle, then the side opposite the greater angle 		
is <u>W Alv</u> than the side opposite the lesser angle.		
Ordering triangle angle measures and triangle side lengths		
1. B	2 3	
	2. B	B
120° 25° C	60 °	
25		X
350	A h 30 c	$A \longrightarrow \frac{114^{\circ}}{C}$
A		
m/C W/A M/B	M/C M/B M/A M	A-WB M/C
111111111111111111111111111111111111111		
00 00 No		20-16 10
Ab bb $A()$	Ab , AC , B(') 1	OUTAL AB

5-5 The Triangle Inequality Theorem Key

While a triangle is formed by three segments, a special relationship must exist among the lengths of the segments in order for them to form a triangle.

1. Triangle Inequality Theorem:

The sum of the lengths of two sides of a triangle must be <u>overtex</u> than the third side.

To test for a Triangle: The sum of the 2 smallest sides must be _______ than the 3rd side.

Are these the sides of a triangle?

2. <u>Use the Triangle Inequality Theorem to find a possible side length of a Triangle:</u> To find the possible side length of the 3rd side of a triangle when given 2 of the 3 sides

of the triangle, you write the following inequality, where x is the 3^{rd} side:

(the difference of the given 2 sides) < x < (the sum of the given 2 sides) (side 1 - side 2)

Example: Describe the possible lengths of the 3^{rd} side of a triangle if one side is 10 inches and the other side is 7 inches.

$$(10 - 7) < x < (10 + 7)$$

3 < x < 17

- A. Could 3 be a possible side of the triangle?
- B. Could 13 be a possible side of the triangle?
- C. Could 23 be a possible side of the triangle? NO

X<17!

Two sides of a triangle are given. Describe the possible lengths of the third side.

- 3. 2 cm and 5 cm $3 \leq 1 \leq 1$
- 4. 7 in and 12 in 5/X<19
- 5. 4 ft and 10 ft 6/X<14