Algebra 2 & Trigonometry Test Review

Date: Block:

Name: _____

Unit 2A – Quadratic Functions and Relations

Target 1: State the domain and range of any relation or function in set builder and interval notation.

1-4: Determine if each graph is a function. State the domain and range of each using set builder notation.

Target 2: I CAN graph a quadratic function, and state all of its parts (vertex, roots/zeros, intercepts, axis of symmetry, domain and range) in any form (standard, vertex, intercept) without a graphing calculator and can write an equation in all 3 form when given its parts.

8-10: Graph each function and fill in the blanks below. Write the domain and range in interval notation.

8. $y = -2x^2 + 4x + 6$ vertex: Is it a maximum or minimum? Circle one. Equation in vertex form: y-intercept: axis of symmetry: domain: range: -10 -8 -6 -4 -2 roots/zeros: Equation in intercept form: _____

9. $y = 2(x + 5)(x + 1)$	vertex:	Is it a maximum or minimum? Circle one.
	Equation in vertex form:	
	y-intercept:	axis of symmetry:
-10 -8 -6 -4 -2 2 4 6 8 10	domain:	range:
-2	roots/zeros:	
-6	Equation in general form:	
10. $y = \frac{1}{2}(x-3)^2$	vertex:	Is it a maximum or minimum?
		Circle one.
8	y-intercept:	axis of symmetry:
	domain:	range:
-10 -8 -6 -4 -2 2 4 6 8 10	roots/zeros:	
-2	Equation in intercept form:	
-6	Equation in general form:	

Target 3: Apply knowledge of quadratics in real-life contexts (using the graphing calculator)

11-13: Draw a sketch of each scenario. Then use the calculator to find each answer.

Round decimal answers to the nearest hundredth.

- **11.** An object is released into the air at an initial height of 9 feet and an initial velocity of 30 feet per second. The object is caught at a height of 10 feet. Use the vertical motion model, $h = -16t^2 + v_0 t + h_0$, where *h* is the height, *t* is the time in motion, h_0 is the initial height, and v_0 is the initial velocity.
 - **a.** Write the equation for the model of this function.
 - **b.** How long the object is in motion?
 - c. What was the maximum height of the object?
 - d. If the ball wasn't caught in the air, how long would it take for it to hit the ground?

- **12.** Lauren is trapped in a building 120 feet above the ground and wants to land on a rescue team's air cushion. Lauren's height is modeled by $h = -16t^2 + h_0$, where t is time and h_0 is initial height.
 - **a.** How long before Lauren reaches safety?
 - **b.** What was the highest Lauren jumped before she landed on the air cushion?
- **13.** A study compared the speed x (in miles per hour) and the average fuel economy y (in miles per gallon) for cars. The results are shown in the table.

Speed, x	15	20	25	30	35	40	45	50	55	60	65	70
Fuel economy, y	22.3	25.5	27.5	29.0	28.8	30.0	29.9	30.2	30.4	28.8	27.4	25.3

- **a.** Use a graphing calculator to view the scatterplot of the data. Then find the best-fitting quadratic model for the data and write it in the blank below rounded to the nearest thousandth.
- **b.** Find the speed that maximizes a car's fuel economy.
- c. Predict what the gas mileage would be if the speed was 63 miles per hour.

Target 4: Factor quadratic expressions and solve a quadratic equation over the set of real numbers by factoring.

14-19: Factor each polynomial completely. Circle your final answer.

14. 2x² + 14x - 36

15. 2x² − 3x − 5

16. 4z² + 4z – 15

17. 16C² – 100

18. 12x²yz – 6xy²z² + 3xyz

19. 4p² + 4p – 24

20.	$3x^2 = 10 - 13x$	21. $x^2 + 12x + 36 = 4$	22. 6 = x ² - x
23.	$4x^2 + 1 = 26$	24. $9x^2 + 30x + 25 = 0$	25. $x^2 - 4x = 5$
26.	$4X^2 - 20X = 0$	27. $2x^2 + 5x - 3 = 0$	28. 36x ² = 25

29-31: Write a quadratic function in <u>general form</u> for the information given.				
29. roots: $x = \left\{\frac{1}{3}, -2\right\}$	30. roots: $x = \left\{-\frac{4}{5}, 1\right\}$	31. roots: x = {12}		