Day 08 Writing Equations of Polynomial Functions

When given the roots, make sure to use the opposite sign in each factor.

- If it is a tangent the factor needs an exponent of 2 and a terrace needs an exponent of 3
- If it is a fraction, make sure to "swing" the denominator (example, don't write $(x \frac{1}{2})$, write (2x 1).
- For imaginary solutions the factor will always be $(x^2 + \#)$.

1-9: Write an equation in factored form for each polynomial described. (assume a=1 if it is not given.

1. Solutions at 2, -1 and a

Solutions at 7 and a terrace at 1. a=4

3. The roots are $0, \frac{2}{3}$, and -3

$$y=x(x-\frac{2}{3})(x+3)$$
 $y=x(3x-2)(x+3)$

4. The zeros are $-\frac{1}{2}$, 2, and $\pm 4i$

$$y = (x+2)(x-2)(x-4i)(x+4i)$$

 $(y = (2x+1)(x-2)(x^2+16))$

5. a=-3, solutions at $\pm 2i$, 6, and

6. The roots are $\frac{2}{5}$ and $\pm\sqrt{2}$ a tangent at -5

 $y = -3(x^2+4)(x-6)(x+5)^2$

 $y = (\chi - \frac{2}{5})(\chi - \sqrt{2})(\chi + \sqrt{2})$

7. a = .02

8. a= .1

9. a = .03

 $y = .02(x+3)^{2}(x+1)(x-3)^{3}$

