The Number e

Name______Block___

Suppose you invest \$1000 in a bank that pays a rate of 9%, compounded n times per year. Find the amount of Inoney you would have in the bank if the interest were compounded various times per year. Fill in the chart.

Compound Interest formula: $A = P\left(1 + \frac{r}{n}\right)^{nt}$

Pert

9% Interest Compounded:	n	Amount of money accumulated After 1 year in the bank:
Annually	1	$A = 1000 \left(1 + \frac{.09}{1}\right)^{\left(1 \cdot 1\right)} = \$ 090 $
Semi-annually	2	\$ 1092.03
Quarterly	4	\$1093.08
Monthly	12	\$11093.81
Semi-monthly	24	\$1 1093,99
Weekly	52	\$ 1094.09
Daily	365	\$ 1094.16
Hourly	8760	\$ 1094.17
Every minute	575W	\$ 1094.17
Every second	31,534	000 \$ 1094.17

1000e.09(1)

As n approaches infinity, the amount of money earned approaches a fixed value. Interest in this case is said to be compounded continuously. If we let P=1, r=1, and t=1 in the compound interest formula, we get:

n	$\left(1+\frac{1}{n}\right)^n$
1	2.00000000
10	2,59374246
100	2,70481363
1,000	2.71692393
10,000	2.71 8 14593
100,000	271826824
1,000,000	271828047
10,000,000	2.71878169
100,000,000	2,71828181
1,000,000,000	2,71828183

C 2 2,

The natural base "e" is irrational and is defined as follows: as $n \to +\infty$,

$$n \rightarrow \left(1 + \frac{1}{n}\right)^n \rightarrow e \approx 2.71828183$$

Euler discovered "e" (1707 – 1783)
It is one of the significant discoveries in math such as pi and imaginary numbers

Continuously Compounded Interest:

A = Pert

Use when money is compounded continuously.

THINK: Pert shampoo works continuously to make your hair luxuriously

A: Amount of money generated after t years

P: Principal amount

 $e \approx 2.718281828459$ (use the e on your TI-83!)

r: rate (% increase or decrease - always convert to a decimal)

t: time (in terms of the number of years)

If \$200 is invested and earns 8.0% simple interest, what is the final value of the investment after 6 years?

200(1+(.08)6=200(1.08)6=317.37

If \$4000 is invested at an annual rate of 6.0% compounded monthly, what will be the final value of the vestment after 10 years?) What if it was invested at an annual rate of 6.0% compounded continuously?

Suppose that you are going to need \$10,000 n thirty-six months when your child starts attending college. You want to invest in a bank that will yield (3.5% interest) compounded monthly flow much should you

 $10,000 = P(1+\frac{035}{12})(123)$ P = 10,000 = 9,00,462 10,000 = P(1.1105...) in years! 1.1105 invest in the bank?

4. Certain bacteria, given favorable growth conditions, grow continuously at a rate of 4.6% day Find the bacterial population after thirty-six hours, if the initial population was 250 bacteria.

e 046 (1.5) - 36 HRS = 1.5 d 245 Corpounded daily = 267.86

What will be the amount yielded if you invest \$20,500) for 15 years at an annual rate of 7.5%, compounded (semiannually?)

\$ 61,858.16/

Graph each function

shift #663 15 6. $f(x) = e^{x}$

