Algebra 2 Test Review

Name: _____

Unit 2B – Quadratic Functions and Relations	

Date: _____ Block: _____

Target 1: I CAN simplify an expression containing complex numbers and or radicals.

What do you know about imaginary numbers?

- What is i? •
- What is i²? •
- What is the proper notation for a complex number? •
- Do you know the Argand plane? •

1-9: Simplify each expression. Circle your final answer.			
1. $i + 3 + \sqrt{-4}$	2. (-6 - 12 <i>i</i>) - (-8 + 23 <i>i</i>)	3. (7 – 3i)(8 + 4i)	
	· · · · · · · · · · · · · · · · · · ·		
4. √–180	5. $(\sqrt{-32})(3\sqrt{-48})$	6. $(3-i)^2$	
7. <i>j</i> ¹⁶³	8. <i>i</i> ²³⁶	9. <i>j</i> ⁴²	

Target 2: I CAN solve a quadratic equation over the set of complex numbers using the most efficient method (factoring, square roots, or the quadratic formula).

How do you know when to use each method?

- Factoring: .
- Square Roots: •
- **Quadratic Formula:** •

What does the discriminant ($b^2 - 4ac$) tell you about the nature of the roots?

- How many roots will it have?
- What if the discriminant is negative?
- What if the discriminant is zero?
- What if the discriminant is a positive perfect square?
- What if the discriminant is not a positive perfect square?

10-18: Solve each quadratic using the most efficient method: factoring, taking square roots, or the quadratic formula. *Circle the final answer. Irrational answers must be written in simplified radical form (no decimals).*

10. $4x^2 + 20 = 0$	11. $6 = x^2 - x$	12. $x^2 - 4 = 0$
13. $x^2 - 9x = 0$	14. $4x^2 - 25 = 0$	15. $7x^2 + 6x + 2 = 0$
16. $2x^2 - 5x = 12$	17. $3(x + 1)^2 + 4 = 22$	18. $x^2 - 4x - 32 = 0$

Target 3: I CAN write a quadratic equation in any form given a combination of its parts.

Do you know all 3 forms of a quadratic function? Standard: Vertex: Intercept/Factored: ٠ 19-22: Write a quadratic function in <u>standard form</u> for the information given. Show all work used to find your equation! **19.** roots: x = {–8, 7} and has a **20.** vertex: (-4, 6) and contains the point: (-1, 9)y-intercept of (0, -280)21. **22.** Max at (-1, 4) and contains the point (2, -14) (2, 4) (3, 2)

