HOMEWORK POLICY: In order to receive a 3, you must follow the procedure listed on all previous syllabi!
This unit requires practice and more practice! In order to guarantee your success, I suggest that you do the Mathspace assignments in the areas where YOU need more practice. YOU are in charge of your grades! The homework grade is a reflection of the assigned worksheets, which are important for your overall understanding.

Please post any questions or AHA moments throughout this unit to the UNIT 5 PADLET on my website.

DATE	DAILY LEARNING TARGETS \& OBJECTIVES	INDEPENDENT PRACTICE (HOMEWORK)	GRADE
Tue/Wed, Jan. 21/22	Test on Unit 4	Gas Consumption Problem due on or before Wed/Thu, Jan. 23/24	
```Thu/Fri, Jan. 23/24 Day 00```	CITYWIDE ALGEBRA 2 MID-ASSESSMENT   Fri. Jan 24 - Last day of the $2^{\text {nd }}$ Quarter   Mon. Jan. 27 - NO SCHOOL: Teacher workday	Day oo Introduction to Composite Functions	$\overline{3}$
Tue/Wed, Jan. 28/29 Day 01	Operations with Functions Introduce PBL Task: "Which is the Best Deal?" - IB Rubric B \& D: Due at the end of the unit!	Day 01 Functions I \& II	$\overline{3}$
$\begin{gathered} \hline \text { Thu/Fri, } \\ \text { Jan. 30/31 } \\ \text { Day } 02 \\ \hline \end{gathered}$	Graphing Square Root Functions Rational Exponents	Day 02 Graphing Square Root Functions   - No calculator!   Day 02 Introduction to Inverse Functions	$\overline{3}$
Mon/Tue, Feb. 3/4 Day 03	Inverse Functions and Relations (Walkabout)   Assign Valentine's Day Card RAFT   (25 point Minor Assessment due by Feb 8/11)	Day 03 Inverse Functions and Relations Make a Power Card if you haven't already	$\overline{3}$
Wed/Thu,   Feb. 5/6   Day 04	nth Roots   Cav Connection Tue., Feb. 5 - Abbr. Schedule	Day 04 Radicals \& Rational Exponents Practice	$\overline{3}$
Fri/Mon, Feb. 7/10 Day 05	Operations with Radical Expressions	Day 05 Operations with Radical Expressions	$\overline{3}$
Tue/Wed, Feb. 11/12 Day 06	Solving Radical Equations   Tuesday, Feb. 11: Report Cards Issued	Day 06 Solving Radical Equations Worksheet	$\overline{3}$
```Thu/Fri, Feb. 13/14 Day 07```	Review Unit 5   Valentine's Day Speed Dating   Monday, Feb. 17: NO SCHOOL - President's Day	Day 07 Unit 5 Test Review Worksheet	$\overline{3}$
Tue/Wed, Feb. 18/19 Day 08	Test on Unit 5 whit's vildutlate bille	TOTAL POINTS	24

Unit 5 Learning Targets:

Target 1: I CAN apply operations with functions, evaluate compositions of functions, verify inverses using composition of functions, and apply composition of functions to real
 world applications.

Target 2: I CAN graph a function, including square root functions, and its inverse and identify the domain and range of each; I can find the equation of the inverse of a function.

Target 3: I CAN simplify expressions containing rational exponents and radicals of a variety of indices.

Target 4: I CAN solve equations containing rational exponents or radicals.

GUIDING QUESTION/GLOBAL CONTEXT: IDENTITIES \& RELATIONSHIPS

GUIDING IDEA:
"The essence of mathematics is not to make simple things complicated, but to make complicated things simple."

UNIT 5 ENDURING UNDERSTANDINGS/BIG IDEAS

1. The domain of the inverse is the range of its original relation!
2. An exponent is the number of times you must multiply its base by itself!

UNIT 5 ESSENTIAL QUESTIONS:

1. What is an inverse? What is an identity? How are they related? Why are these definitions so important in THIS unit?
2. Explain why a person would perform a composition of functions. Include a real-world example that you could solve by using a composition of functions.

SOL Objectives (2009):

All. 1 The student will
b) add, subtract, multiply, divide, and simplify radical expressions containing rational numbers and variables, and expressions containing rational exponents; and

All. 3 The student will solve
c) equations containing rational algebraic expressions; and
d) equations containing radical expressions.

All. 6 For absolute value, square root, cube root, rational, polynomial, exponential, and logarithmic functions, the student will
a) recognize the general shape of function families; and
b) use knowledge of transformations to convert between equations and the corresponding graphs of functions.

All. 7 The student will investigate and analyze linear, quadratic, absolute value, square root, cube root, rational, polynomial, exponential, and logarithmic function families algebraically and graphically. Key concepts include
a) domain, range, and continuity;
b) intervals in which a function is increasing or decreasing;
c) extrema;
d) zeros;
e) intercepts;
f) values of a function for elements in its domain;
g) connections between and among multiple representations of functions using verbal descriptions, tables, equations, and graphs;
h) end behavior;
i) vertical and horizontal asymptotes;
j) inverse of a function; and
k) composition of functions algebraically and graphically.

PREREQUISITE TARGETS

- I CAN simplify a radical and rationalize a denominator
- I CAN graph and translate any of the 10 function family members
- ICAN solve a formula for a variable
- I CAN define and apply the definitions of a relation, function, input, output, domain, range, interval notation, inverse, identity, THE IDENTITY FUNCTION, and use function notation when appropriate.

