Algebra 2 Trigonometry Unit 6 Test Review Exponential and Logarithmic Functions

Name	
Date _	Block

- There will be two parts to the test: A NON-CALCULATOR portion and a CALCULATOR portion!
- Know how to graph exponential functions and logarithmic functions. Be able to determine the domain and range, the y-intercept, and the equations of the asymptotes of these functions.

• Know how to determine whether a function is a growth or decay function.

State whether the function represents exponential growth or exponential decay. (NO calculator)				
7. $f(x) = 5\left(\frac{3}{4}\right)^{x}$	8. f(x) = 2e ^x	9 . f(x) = 3(6) ^{-x}	10. f(x) = 4(3) ^x	11. f(x) = 2e ^{-3x}

•	Know how to change an expression from exponential form to logarithmic form and vice versa
D	write each equation in exponential form (NO calculator)

Remitte sach equation				
12 . $\log_5 \frac{1}{5} = -1$	13 . log ₈ 512 = 3	14 . log ₁₄ 196 = 2	15 . log ₁₀₅ 11,025 = 2	
Rewrite each equation i	in logarithmic form. (NO c	alculator)		
16 . 2 ⁵ = 32	17 . 10 ⁻¹ = 0.1	18. $\left(\frac{1}{2}\right)^{-1} = 2$	19. $36^{-\frac{1}{2}} = \frac{1}{6}$	

Know how to simplify a logarithm without a calculator.

Eval	Evaluate each expression without using a calculator.			
20.	log₂16	21 . log₅25	22 . log ₁₁ 1	23. $\log_1 2$
24.	log ₃ 3 ^{-2.27}	25 . log ₇ 343	26 . log ₂₉ 29	27 . log ₉ 9 ³

• Know how to find the inverse of a function. (Remember that a logarithmic function is the inverse of an exponential function).

Find the inverse of each f	unction. (NO calculator)		
28 . f(x) = log ₁ x	29 . y = ln (x - 3)	30 . f(x) = 7 [×]	
3			

• Know how to expand and condense a logarithmic expression. KNOW THE PROPERTIES!

Expo	and each expression.	(NO calcu	lator)			
31.	log₃9x	32. log 32	× ⁴	33 . log ₆ x ⁵		34 . In 15x
35.	log749x²	36 . log √	9x	37. In $x^{\frac{1}{3}}y^4$		38 . log x ² γ ³ z ⁴
Cond	lense each expressio	n. (NO cal	culator)			
39.	log ₄ 7 + log ₄ 10 - log ₄ 2	2 4	0. 4 ln x + 6 l	n y + 3 ln z	41 . 5log ₄ 3	8 + 6log4x + 7log4y
42.	$\frac{1}{4}(\ln 9 - \ln x) + \frac{1}{4} \ln x$	n 3		43 . 3(log₅10 -	 log₅2) + 1/2 log	⁵ 1 100

• Know how to evaluate an expression by applying the properties of logarithms.

Use	Jse a property of logarithms to evaluate each expression. (NO calculator)			
44.	log₂ (4 · 8)	45 . In e ³	46 . log ₂ 8 ²	47 . log ₆ 216
48.	log <u>1</u> 100	49 . In $\frac{1}{e^5}$	50 . log 0.001	51 . log ₃ 27 ²

• Know how to evaluate an expression using the CHANGE-OF-BASE FORMULA.

Use	the change-of-base formul	a to evaluate each expression. (M	Nay use calculator)
52.	log₀24	53 . log ₉ <u>5</u> 16	54 . log ₂ 12

• Know how to solve a logarithmic or exponential equation.

Solve each equation. Check for	extraneous solutions. (May use a	calculator)
55 . 4.7 [×] = 32	56 . 4 [×] - 3 = 11	57. $3^{x+2} = 9^{x+1}$
58 . log ₅ (2x + 10) = log ₅ 4x	59 . ln (5 - x) = 12	60 . log ₂ x + log ₂ (x + 4) = 5
61 . In 8x = 4	62 . 9000 = 500(1.065) [×]	63. $3^{x-2} = 5^{2x}$

♦ <i>k</i>	Know how to solve a growth problem. $y = a(1 + r)^{\dagger}$ Know what is meant by "growth factor".
♦ <i>I</i>	Know how to solve a decay problem. $y = a(1 - r)^{\dagger}$ Know what is meant by "decay factor".
♦ H	Know how to calculate compounded interest: $A = P\left(1 + \frac{r}{n}\right)^{n^{\dagger}}$ & continuously compounded interest: $A = Pe^{r^{\dagger}}$
Solv	ve each problem. (May use a calculator)
64.	Carl plans to invest \$500 at 8.25% interest, compounded continuously. How long will it take for his money to triple?
65.	A piece of machinery valued at \$250,000 depreciates at a steady rate of 12% per year. After how many years will the value have depreciated to \$100,000?
66.	Ray invested \$10,000 in an account which yields 4.5% interest compounded monthly. Assuming no deposits or withdrawals are made, what will the balance of the account be after 5 years?
67.	Dave bought a new car 8 years ago for \$5400. To buy a new car comparably equipped now would cost \$12,500. Assuming a steady rate of increase, what was the yearly rate of inflation in car prices over the 8 year period?
68.	An organism of a certain type can grow continuously from 30 to 195 organisms in 5 hours. Find k, the rate of continuous growth, for the growth formula ($y = ne^{kt}$).
69.	An equation for loudness L in decibels is given by L = 10log R, where R is the sound's relative intensity. An air-raid siren can reach 150 decibels and jet engine noise can reach 120 decibels. How many times greater is the relative intensity of the air-raid siren than that of the jet engine noise?