Algebra 2 Trigonometry Unit 6 Test Review Exponential and Logarithmic Functions

Name $\qquad$

- There will be two parts to the test: A NON-CALCULATOR portion and a CALCULATOR portion!
- Know how to graph exponential functions and logarithmic functions. Be able to determine the domain and range, the $y$-intercept, and the equations of the asymptotes of these functions.

Graph each function without a calculator. State the $y$-intercept, the domain and range using interval notation, and the equation of the asymptote.


## Asymptote:

$y$-intercept: $\qquad$
Domain:


Range:
4. $y=\log _{3} x$


Asymptote: $\qquad$
$y$-intercept: $\qquad$
Domain:
Range:

- Know how to determine whether a function is a growth or decay function.

State whether the function represents exponential growth or exponential decay. (NO calculator)
7. $f(x)=5\left(\frac{3}{4}\right)^{x}$
8. $f(x)=2 e^{x}$
9. $f(x)=3(6)^{-x}$
10. $f(x)=4(3)^{x}$
11. $f(x)=2 e^{-3 x}$

- Know how to change an expression from exponential form to logarithmic form and vice versa.

Rewrite each equation in exponential form. (NO calculator)

| 12. $\log _{5} \frac{1}{5}=-1$ | 13. $\log _{8} 512=3$ | 14. $\log _{14} 196=2$ | 15. $\log _{105} 11,025=2$ |
| :--- | :--- | :--- | :--- |
| Rewrite each equation in logarithmic form. (NO calculator) <br> $16.2^{5}=32$ 17. $10^{-1}=0.1$ | 18. $\left(\frac{1}{2}\right)^{-1}=2$ | 19. $36^{-\frac{1}{2}}=\frac{1}{6}$ |  |

Know how to simplify a logarithm without a calculator.

| Evaluate each expression without using a calculator. |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 20. $\log _{2} 16$ | $21 . \log _{5} 25$ | 22. $\log _{11} 1$ | $23 \cdot \log _{\frac{1}{4}} 2$ |
| $24 . \log _{3} 33^{-2.27}$ | $25 . \log _{7} 343$ | 26. $\log _{29} 29$ | $27 . \log _{9} 9^{3}$ |

- Know how to find the inverse of a function. (Remember that a logarithmic function is the inverse of an exponential function).
Find the inverse of each function. (NO calculator)

28. $f(x)=\log _{1} x$
29. $y=\ln (x-3)$
30. $f(x)=7^{x}$

- Know how to expand and condense a logarithmic expression. KNOW THE PROPERTIES!

| Expand each expression. (NO calculator) |  |  |  |
| :--- | :--- | :--- | :--- |
| $31 . \log _{3} 9 x$ | $32 . \log 3 x^{4}$ | $34 . \ln 15 x$ |  |
| $35 . \log _{6} x^{5} 49 x^{2}$ | $36 . \log \sqrt{9 x}$ | $37 . \ln x^{\frac{1}{3}} y^{4}$ | $38 . \log x^{2} y^{3} z^{4}$ |

Condense each expression. (NO calculator)
39. $\log _{4} 7+\log _{4} 10-\log _{4} 2$
40. $4 \ln x+6 \ln y+3 \ln z$
41. $5 \log _{4} 3+6 \log _{4} x+7 \log _{4} y$
42. $\frac{1}{4}(\ln 9-\ln x)+\frac{1}{4} \ln 3$
43. $3\left(\log _{5} 10-\log _{5} 2\right)+\frac{1}{2} \log _{5} \frac{1}{100}$

- Know how to evaluate an expression by applying the properties of logarithms.

Use a property of logarithms to evaluate each expression. (NO calculator)

| 44. $\log _{2}(4 \cdot 8)$ | 45. $\ln e^{3}$ | 46. $\log _{2} 8^{2}$ | $47 \cdot \log _{6} 216$ |
| :--- | :--- | :--- | :--- |
| 48. $\log \frac{1}{100}$ | 49. $\ln \frac{1}{e^{5}}$ | 50. $\log 0.001$ | $51 . \log _{3} 27^{2}$ |

- Know how to evaluate an expression using the CHANGE-OF-BASE FORMULA.

Use the change-of-base formula to evaluate each expression. (May use calculator)
52. $\log _{6} 24$
53. $\log 9 \frac{5}{16}$
54. $\log _{2} 12$

- Know how to solve a logarithmic or exponential equation.

Solve each equation. Check for extraneous solutions. (May use calculator)

| 55. $4.7^{x}=32$ | $56.4^{x}-3=11$ | $57.3^{x+2}=9^{x+1}$ |
| :--- | :--- | :--- |
| 58. $\log _{5}(2 x+10)=\log _{5} 4 x$ | $59 . \ln (5-x)=12$ | $60 . \log _{2} x+\log _{2}(x+4)=5$ |
| $61 . \ln 8 x=4$ | $62.9000=500(1.065)^{x}$ | $63.3^{x-2}=5^{2 x}$ |
|  |  |  |

- Know how to solve a growth problem. $\quad y=a(1+r)^{\dagger} \quad$ Know what is meant by "growth factor".
- Know how to solve a decay problem. $\quad y=a(1-r)^{\dagger} \quad$ Know what is meant by "decay factor".
- Know how to calculate compounded interest: $A=P\left(1+\frac{r}{n}\right)^{n t}$ \& continuously compounded interest: $A=P e^{r t}$

Solve each problem. (May use a calculator)
64. Carl plans to invest $\$ 500$ at $8.25 \%$ interest, compounded continuously. How long will it take for his money to triple?
65. A piece of machinery valued at $\$ 250,000$ depreciates at a steady rate of $12 \%$ per year.

After how many years will the value have depreciated to $\$ 100,000$ ?
66. Ray invested $\$ 10,000$ in an account which yields $4.5 \%$ interest compounded monthly. Assuming no deposits or withdrawals are made, what will the balance of the account be after 5 years?
67. Dave bought a new car 8 years ago for $\$ 5400$. To buy a new car comparably equipped now would cos $\dagger$ $\$ 12,500$. Assuming a steady rate of increase, what was the yearly rate of inflation in car prices over the 8 year period?
68. An organism of a certain type can grow continuously from 30 to 195 organisms in 5 hours. Find k, the rate of continuous growth, for the growth formula $\left(y=n e^{k t}\right)$.
69. An equation for loudness $L$ in decibels is given by $L=10 \log R$, where $R$ is the sound's relative intensity. An air-raid siren can reach 150 decibels and jet engine noise can reach 120 decibels. How many times greater is the relative intensity of the air-raid siren than that of the jet engine noise?

