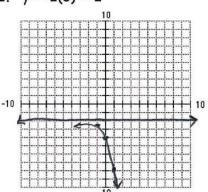

Algebra 2 Trigonometry Unit 7 Test Review Exponential and Logarithmic Functions

Name Master & CL
Date ______ Block ____

- ♦ There will be two parts to the test: A NON-CALCULATOR portion and a CALCULATOR portion!
- ♦ Know how to graph exponential functions and logarithmic functions. Be able to determine the domain and range, the y-intercept, and the equations of the asymptotes of these functions.

Graph each function without a calculator. State the y-intercept, the domain and range using interval notation, and the equation of the asymptote.

1. y = 3^x

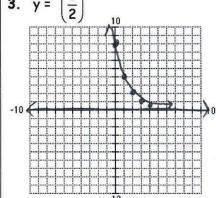


Asymptote: y=0

y-intercept: (0, 1)Domain: $(-\infty, \infty)$

Range: (0,00)

2. $y = -2(3)^x - 2$

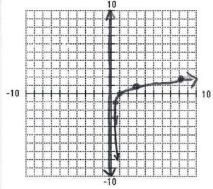

Asymptote: y=-2

y-intercept: (0,-4)

Domain: (-o) oo)

Range: $(-\infty, -2)$

 $(-1, -2\frac{2}{3})$ 3. $y = (\frac{1}{2})^{x-3}$

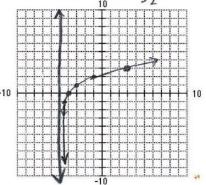

Asymptote: y=0

y-intercept: (0,8)

Domain: $(-\infty,\infty)$

Range: (O_{jo})

4. y = log3x


Asymptote: X=0

y-intercept: NONE

Domain: (0,00)

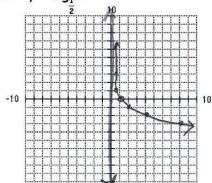
Range: (-0)00

5. y = log₂(x + 5) 109₂5

Asymptote: _

X=-5

y-intercept: _~


≈ (0,2,-)

Domain:

Range:

(-00,00)

6. $y = \log_{1} x$

Asymptote: X= O

y-intercept: NONE

Domain: (0,00)

Range: $(-\rho)$

Know how to determine whether a function is a growth or decay function.

State whether the function represents exponential growth or exponential decay. (NO calculator)

7. $f(x) = 5\left(\frac{3}{4}\right)^{x}$

8. $f(x) = 2e^x$

9. f(x) = 3(6)-x

10. $f(x) = 4(3)^x$

11. $f(x) = 2e^{-3x}$

Decay

Growth

Decay

Growth

Decay

Know how to change an expression from exponential form to logarithmic form and vice versa.

Rewrite each equation in exponential form. (NO calculator) 12. $\log_5 \frac{1}{5} = -1$ 13. $\log_8 512 = 3$

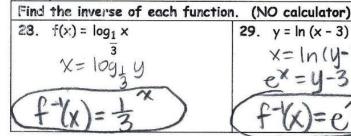
$$5^1 = \frac{1}{5}$$
 $8^3 = 512$

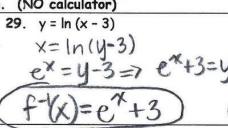
Rewrite each equation in logarithmic form. (NO calculator)

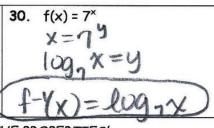
16.
$$2^5 = 32$$
 $\log_2 32 = 5$

17.
$$10^{-1} = 0.1$$

18.
$$\left(\frac{1}{2}\right)^{-1} = 2$$

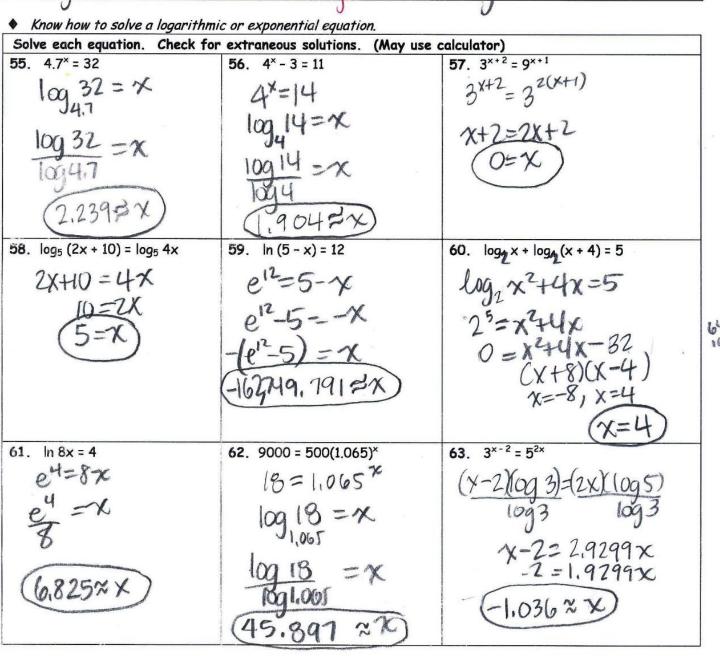

$$|00| \pm 2 = -|$$


19.
$$36^{\frac{1}{2}} = \frac{1}{6}$$
 $| column{2}{c} | col$


Know how to simplify a logarithm without a calculator.

Evaluate each expr	ession without using a ca	culator.	
20. log ₂ 16	21. log ₅ 25	22. log ₁₁ 1	23. $\log_{\frac{1}{4}} 2$
24. log ₃ 3 ^{-2.27} -2 ₁ 27	25. log ₇ 343	26. log ₂₉ 29	27. log ₉ 9 ³

Know how to find the inverse of a function. (Remember that a logarithmic function is the inverse of an exponential function).


Know how to expand an	nd condense a logarithmic e	xpression. KNO	W THE PROP	PERTIES!
Expand each expression.				
31. log39x 1 2 Hog x	32 . log 3x ⁴	33. log ₆ x ⁵		34. ln 15x
10g39+10g3x	10g3+410gx	5109.X	•	In15+Inx
35. log ₇ 49x ²	36. log √9x 1	37. $\ln x^{\frac{1}{3}}y^4$		38. log x ² y ³ z ⁴
* 2 + 210g, x * 10g, 49+210g, x	10g 92+10gx2	11	llnu	210gx + 310gy + 410gz
11	10g3 + 210gx	3111x+	1119	zight siggt liage
Condense each expression	n. (NO calculator)			
39. log47 + log410 - log42	40. 4 ln x + 6	lny+3 lnz	41. 5log4	3 + 6log ₄ x + 7log ₄ y
m 70 = 100	35) Inx+ In	46+ln=3	O Francisco	+10g4x"+10g44"
1094 7 = (1094		1623)		243 x (y 1)
42. $\frac{1}{4} (\ln 9 - \ln x) + \frac{1}{4} \ln x$	n 3	43. 3(log ₅ 10 -	$\log_{5}(2) + \frac{1}{2}\log_{5}(2)$	95 100
In 94-In x4+	In 3 4	3(1095)	(2) + 100	$s(t_0)^{t}$
In 4 9.3.45	$3 = \ln \frac{4}{21} \times 3$	1 (3	+ 100	击

Know how to evaluate an expression by applying the properties of logarithms.

	rithms to evaluate each exp		
44. log ₂ (4 · 8)	45. In e3 3 In e=	46. log ₂ 8 ²	47. log ₆ 216
lagry + lagr 8 (5)	3(1)=(3)	210gz8= 2(3)6)	log. 63=31096
48 . $\log \frac{1}{100}$	49. In 1/5	50. log 0.001	51. log ₃ 27 ²
1091-109100	Inj-lne5	109 1000 = 109 1000	2109327=2(3
6-2=(3)	0-5=(5)	0-3=(-3)	(6)

Mow how to evaluate an expression using the CHANGE-OF-BASE FORMULA.

Use the change-of-base fo	rmula to evaluate each expression. (May use calculator)
109624 1096 = 1.774	53. $\log_9 \frac{5}{16} \log \frac{7}{16} = 0.529$ $\frac{\log_2 12}{\log_1 2} = 3.585$
♦ Know how to solve a logari	thmic or exponential equation.

- Know how to solve a growth problem. $y = a(1 + r)^{\dagger}$ Know what is meant by "growth factor".
- Know how to solve a decay problem. $y = a(1 - r)^{\dagger}$ Know what is meant by "decay factor".
- Know how to calculate compounded interest: $A = P\left(1 + \frac{r}{n}\right)^{n\tau}$ & continuously compounded interest: $A = Pe^{r\tau}$

Solve each problem. (May use a calculator)

64. Carl plans to invest \$500 at 8.25% interest, compounded continuously. How long will it take for his money to triple?

money to triple?
$$(.0825 \cdot t)$$

 $3 = e^{.0825t}$

65. A piece of machinery valued at \$250,000 depreciates at a steady rate of 12% per year. After how many years will the value have depreciated to \$100,000?

$$100,000 = 250,000 (1-.12)^{t}$$

 $0.4 = .88^{t}$

lm.4= + log, 88

Ray invested \$10,000 in an account which yields 4.5% interest compounded monthly. Assuming no deposits or withdrawals are made, what will the balance of the account be after 5 years?

$$A = 10,000 \left(1 + \frac{045}{12}\right)^{(12.5)} = \left(12517.96\right)$$

67. Dave bought a new car 8 years ago for \$5400. To buy a new car comparably equipped now would cost \$12,500. Assuming a steady rate of increase what was the yearly rate of inflation in car prices over the 8 year period?

e 8 year period?

$$12,500 = 5400(1+r)^8$$
 $(2.315) = (1+r)^8$
 $(1+r)^8$
 $(3.1106 = -r)$
 $(3.1106 = -r)$

68. An organism of a certain type can grow continuously from 30 to 195 organisms in 5 hours. Find k, the rate of continuous growth, for the growth formula (y = nekt), where t is the time in hours.

$$195 = 30e^{k.5}$$
 $k = .0006.5' = .37436 = 37.44\%$

69. An equation for loudness L in decibels is given by L = 10log R, where R is the sound's relative intensity. An air-raid siren can reach 150 decibels and jet engine noise can reach 120 decibels. How many times greater is the relative intensity of the air-raid siren than that of the jet engine noise?

$$\frac{10^{5}}{10^{12}} = 10^{3} =$$

$$150 = 10\log R$$
 $120 = 10\log R$ $\frac{10^{15}}{10^{12}} = 10^3 = 1,000 \text{ times}$
 $15 = \log R$ $12 = \log R$ $10^{12} = 10^{12}$ greater